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ABSTRACT Obtaining the accurate real-time train number and location in a railway network is necessary
for railway traffic operation control. This paper investigates the implementation and optimization method of
train number tracking, by which the train number and location information can be captured. According to
the characteristics of the train operation, the train moving trajectory and the train number tracking problem,
the mathematical description of the problem and the tracking model based on the railway signaling states
and train schedules are proposed. Then, a method using a hidden Markov model prediction is proposed
in order to improve the correctness of train number tracking. The simulation results are compared with the
results obtained under certain restrictions, and the analyses are discussed. The results show that the proposed
method can effectively improve the accuracy of train number tracking with better fault-tolerant robustness.

INDEX TERMS Centralized traffic control (CTC), train number tracking, train location prediction, hidden
Markov model.

I. INTRODUCTION
Centralized traffic control (CTC) systems are one of the most
important and widely used systems for train dispatching in
Chinese railways, and they help dispatchers make better train
operation decisions. Train number tracking (TNT) is the key
function of a CTC system, which provides details on the
train location with a specified identification (train number)
throughout the entire operational area. Moreover, most of the
automatic function of a CTC, such as Automatic Route Set-
ting (ARS), Automatic Train Monitoring (ATM), and Auto-
matic Train Arrival/Departure Time Recording (ATA/DTR)
all rely on the train number tracking function, which is one
of the cores of train control and dispatching. The accuracy
of the results calculated by the train number tracking system
are critical to the safe and reliable operation of CTC and the
dispatchers. Inappropriate decisions may be made based on
inaccurate train number and location results, and setting the
wrong routes for an incoming train could lead to a disruption
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state or, even worse, a train collision due to train location
detection failure. This is possible in some cases, such as
the presence of bad weather, the train weight is insufficient,
the track circuit cannot detect the train and the dispatchers are
too busy to observe it, etc.

Currently, in traditional railways with fixed block or high-
speed railways in a backup mode (if the wireless communi-
cation between the train’s onboard equipment and the ground
devices have broken down), the train number tracking mainly
relies on the railway signaling information provided by a
computer-based interlocking (CBI) system, a 6502 relay sys-
tem or a train control center system (TCC), which collects
signaling information between the two adjacent station inter-
locking areas. As the fundamental information for the train
number tracking calculation, signaling information transmit-
ted to the CTC is not always consistent with the actual train
locations, resulting in inaccurate train number and locations.
To improve the reliability, theWireless Train Number (WTN)
system is built on the traditional Chinese railway, through
which the train identification and location information from
the train’s onboard devices can be transmitted to the CTC
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through the GSM-R wireless channel but with a lower loca-
tion precision.While this information can be used as auxiliary
decision information, it is not very dependable, so the train’s
real time schedule information is adjusted by the dispatchers
from time to time. However, none of the methods above can
guarantee a high accuracy of the CTC train number tracking
in a railway environment under the influence of disturbances.

There has been some research on the train number tracking
method of a fixed block railway [1]–[4]. For example, [1]
used the railway layout topology characteristics with the
track circuit state transition to decide the train number and
locations; [2] used an expert system that adopted the method
of storing the knowledge of the train route setting rules to
improve the correctness of the train number tracking between
the section parts and the interlocking routes; [3] used finite
automaton to model the relationship between the train loca-
tions and the states of tracks and points; and [4] used a
Bayesian method to calculate the possibility of the train’s
next step movement. All of the above studies are based on
the assumption that the signaling information received by the
CTC can perfectly reflect the true location of the train without
considering much about the uncertainty of the entire railway
environment.

Few works concentrate on the train number tracking relia-
bility problem, even though it is incredibly important. The
main reason for this is that, compared with the increasing
system complexity and the effort to improve the reliability
of train number tracking, it is much easier for dispatchers
to manually find and correct any inaccurate train numbers
and locations. This is true in railway areas with a low train
density where the dispatchers are not busy, while in railway
areas with a high train density, train dispatchers need to
monitor several types of information simultaneously through
CTC screens and monitors, including train locations, speeds,
signaling states, block occupation, system devices status, etc.
Due to heavy workloads, it is almost impossible to manually
guarantee the complete correctness of the train number’s
indication without any oversights.

To the best of our knowledge, there are no previous predic-
tion approach to deal with train number tracking reliability
problem. Hidden Markov model has been widely used as a
prediction method and shows great performance. It has been
applied in transportation, such as passenger’s trip-chains [5],
vehicle trajectory [6], vehicle’s speed [7], driver’s destina-
tions and routes [8], etc. As a result, this paper is the first
attempt to apply hiddenMarkov model in train number track-
ing reliability problem. This paper proposes a novel approach
to handle this uncertainty issue in the train number tracking
processes, as well as minimize the risk of inaccurate train
numbers. The main contributions of this work are shown in
the following:
1) Defined a custommathematical model of track number

tracking based on signaling indication state and real-
time train schedule.

2) Proposed a prediction framework with the hidden
Markov model and a Bayesian prediction method to

improve the reliability of the train number tracking for
a fixed block railway.

3) Application of a novel data oscillation and loss
improvement algorithm to eliminate the influences of
the signaling indication oscillation and improve the
robustness and availability of train number tracking.

The remainders of this paper is organized as fol-
lows. In Section II, the concept of train number track-
ing is described and the mathematical model is proposed.
In Section III, the prediction model and framework of train
number tracking are proposed and explained. In Section IV,
the simulation results are presented and analyzed. Finally,
Section V concludes the whole paper.

II. CONCEPT AND MODELING OF TNT
Train number tracking uses the train number as the specific
train identification to continually indicate the spatial location
of a train in a railway in a time series. The reliability of the
train number and the train location are key influencing factors
of the operation strategy planning and implementation. The
train number tracking is the core function of the CTC system.

A. OVERVIEW OF THE CTC SYSTEM
The CTC system is the railway signal technical equip-
ment used to centralize the control of the signal equipment
and to command and manage train operations and shunting
service [9]. The CTC system is composed of the three fol-
lowing subsystems:

1) DISPATCHING CENTER SUBSYSTEM
The dispatching center system performs the train operation
between the dispatching center and the stations under proper
train planning and managing, including whole control zone
train location and state monitoring, train operation schedule
generating and adjusting, releasing and transmitting dispatch
command orders, shunting and maintenance work planning,
automatically or manually train route setting, data message
processing and exchanging between center dispatcher work-
stations and stations, train arrival and departure time record-
ing, stations controlled mode adjusting, etc.

2) STATION SUBSYSTEM
The station subsystem implements the train operation deci-
sions from the dispatching center. Most of the implemen-
tations rely on the Station Autonomous Computer (SAC),
which is also the key part of the CTC system. The SAC
performs the following important functions: Receive and
store the train schedules from the dispatching center and train
operation instructions from the dispatching center or station
train operators on duty, automatically determine conflicting
free train routes or receive the train route setting commands
from the operators and deliver them to the interlocking system
for execution in due time, set train routes based on the stored
train schedules and instructions in case of a disconnection
with the dispatching center, solve the confliction between the
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FIGURE 1. Functional structure of the CTC system.

train operation and shunting operation, collect the signaling
equipment status information in real time, track the train
number, check the signaling conditions based on the station
rules and warn about abnormal conditions.

3) NETWORK SUBSYSTEM
The network subsystem is composed of network communica-
tion equipment and transmission channel, which establishes
connections and data communications between the dispatch-
ing center subsystem and the station subsystem. The network
subsystem uses the double-loop and circuitous rings redun-
dancy structure to improve the data transmission reliability.

B. TRAIN NUMBER TRACKING
The train number tracking mainly calculates the train num-
ber and location based on the signaling status information
received from CBI/6502 and TCC, then transmits the results
to the other components of CTC system. Figure 1 refers to
the functional structure of the CTC system, and presents the
logic relationship between the TNT and other functional parts
of the CTC system.

As presented in Figure 1, TNT calculates the train number
and locations through the information from CBI/6502, TCC,
and WTN. ATM displays the train numbers and locations on
the screens. ARS determines the objective routes based on the
train numbers and locations and train schedules. ATA/DTR
receives the arrival and departure times of a specific train
from TNT and records it. Temporary speed restriction (TSR)
decides the speed restriction with consideration of the train
type (indicated by the train number) and location. The train
dispatching command (TDC) formulates the train dispatching
command orders based on the information from the TNT,
the train regulation adjusts the real-time train schedules based
on the exact train number and location, and HMI offers
an interface between the operators and TNT to modify the
incorrect train numbers.

The train number tracking depends primarily on the persis-
tence signaling information. Combined with auxiliary infor-
mation, such as real-time schedules, the wireless train number
can infer the actual train and location dynamically and accu-
rately. The inference foundation can thus be derived from the
following characteristics:

FIGURE 2. Real-time schedule guidance.

1) SPACE-TIME EXCLUSIVITY
Train xj ∈ X has a certain spatial location dk ∈ D of
absolute exclusive possession at any time point ti ∈ T ,
where X is the set of train, D is the set of location and T
is the set of time point. In the ideal environment without any
signaling equipment failure, external interference or mainte-
nance work, the occupancy state indicated by the signaling
information can be considered to be a sufficient and necessary
condition for train detection. Let ri,j,k represent the relation of
xj and dk at ti, where ri,j,k = 1 means xj on dk at ti, otherwise
ri,j,k = 0. To meet the exclusivity attributes, the following
restrictions should be applied:∑

j=1

ri,j,k ≤ 1 ∀ti ∈ T ,∀xj ∈ X ,∀dk ∈ D. (1)

2) SPACE-TIME CONTINUITY
If train xj travels from dk to dk+n, then xj needs to occupy
blocks dk , dk+1, dk+2, . . . , dk+n in turn within a certain
period of time, as shown in Figure 2. Since the current loca-
tion of xj only depends on its last location, the future location
only depends on the current location and is independent of the
past location, which means the train tracking is in accordance
with Markov rules. Let r̃i,j,k ∈ {0, 1} represent that dk was
either occupied by xj as of ti or not. When xj occupies dl at ti,
the following restrictions should be applied:

l∑
u=k

r̃i,j,u = l − k + 1

k+n∑
u=l+1

r̃i,j,u = 0

ri,j,l = 1
k < l < k + n.

(2)

With characteristics 1) and 2), we can establish the map-
ping relationship between the signaling indications and the
train locations, which means that the status changes of the
signaling equipment (track, point, block, etc.) that the train
travels through reflects the train traveling path and can be
used to calculate the train location and determine the train
number. Let D represent the signaling equipment set, d ∈ D.
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FIGURE 3. Train number tracking state transition.

Define the binary function f (di, dj) = {0, 1}, where 1 means
di and dj are neighbors, and 0 means otherwise. v(di) =
{0, 1}, where 1 means di is occupied, and 0 means otherwise.
Let Tr(di) represent the labeled train number at location di
when di is occupied as indicated by the signaling information,
then define the train number tracking function as follows:

Tr(di+1) = Tr(di)× f (di, di+1)× v(di)× v(di+1). (3)

Tr(di+1) = 1 means the train on di is the same train on di
and shares the same train number; otherwise, Tr(di+1) = 0
means the train on di has a different train label from the train
on di+1, which should be labeled with other auxiliary infor-
mation, such as the train schedules we will discuss later or it
should be labeled as an unrecognized train if we still cannot
obtain sufficient information to determine the train number.
Therefore, the train number tracking can be generalized as a
discrete state transition problem. Figure 3 refers to the train
number tracking state transition.

In Figure 3, ‘‘A’’ and ‘‘B’’ are two neighbor location units
in the train traveling path, and the train travel direction is
from ‘‘A’’ to ‘‘B’’. State 1© represents no train on A and B.
State 2© represents a train on A but not one on B. State 3©
represents a train on A and B. State 4© represents a train
on B but not one on A. O(dk ) denotes that dk is occupied,
as indicated by signaling information. C(dk ) denotes that dk
is not unoccupied, as indicated by signaling information.

Signaling information is always mixed with many distur-
bances when a train is traveling on a railroad in an actual envi-
ronment, which leads to an uncertain relationship between
the signaling information and train location, and sometimes
results in the wrong location calculation or a mislabeled
train number. Table 1 presents some disturbance scenarios,
in which the train location cannot be correctly determined
by the signaling information and results in the train being
mislabeled or with an abnormal location.

With the following characteristics, the train schedules can
be used to improve the robustness and the recovery ability of
train number tracking.

3) TRAIN SCHEDULES TIME GUIDANCE
Following schedules to dispatch trains is still the basic princi-
ple of current railway dispatching operations. At the current
time point within a certain range, the real-time schedules have

TABLE 1. Disturbance scenarios.

a high accuracy (such aswithin half an hour; Chinese railways
usually adopt a 3-hours real-time schedule. The dispatcher
adjusts the time-closer schedules from time to time try to
guarantee their correctness). The closer to the time point,
the more accurate the train schedules, which means the trains
arriving time point and departing time point close to the
current time point decided by the schedules have relatively
high accuracies. Therefore, the real-time train schedule can
be introduced as a way for train number verification. Let taj,k
and tdj,k respectively represent the scheduled arriving time and
departing time of location dk for train xj. Assuming this, x ′j is
a scheduled train but we do not know the exact train number
labeled by the schedules, and now x ′j occupies track dk at ti.
If x ′j follows the adjusted real-time schedules, with dk and ti as
the key features, a unique train can be found in the schedules
and should be matched with xj. To label xj with the schedules,
there are two restrictions that should be met:
a. ti should be in the scheduled time window

[
taj,k , t

d
j,k

]
,

which means that in this period there should be a train
staying in the location if the schedules are correct as
follows: (

tdj,k − ti
)
×

(
ti − taj,k

)
≥ 0

b. There must be a train xj that occupies dk at ti, which
means ri,j,k = 1. There should also be a train staying
in location dk , which can be deduced from signaling
information.

The trainmay arrive earlier or departure later, so sometimes
the real-time schedules are not accurate. The constants
α1 and α2 are introduced to obtain better robustness,
which respectively represent the train arriving and depart-
ing time deviations. These constants should be less than
half of the minimum train tracking interval based on
experts’ experience. The time window therefore changes to(
taj,k − α1, t

d
j,k + α2

)
. Let yi,j,k = 1, for

(
tdj,k + α1 − ti

)
×(

ti − taj,k + α2
)
≥ 0, and 0 otherwise. This leads to the train

verification function as follows:

Tr(dk ) =

{
xj if yi,j,k × ri,j,k > 0,∀i, j, k
0 otherwise

. (4)
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FIGURE 4. HHM of the train number tracking.

4) TRAIN SCHEDULES SEQUENCE GUIDANCE
The trains traveling sequences are determined by the sched-
ules. If two trains travel on the same path during a certain
period, the train travel sequence determined by the schedules
can be used for train number verification as follows:

Tr(dk ) =


xj if f ′(xj, xj+1, ti) = 1, ri,j,k × ri,j+1,k+n = 1,∑

j

k+n−1∑
l=k+1

ri,j,l = 0, n > 1,∀i, j, k

0 otherwise,
(5)

where f ′(xj, xj+1, ti) is a function to determine whether or
not two trains have the same schedule paths at ti. equation
(5) means there should be no occupied signaling information
between dk and dk+n if xj and xj+1 are following the train
according to the schedules at ti and there should be at least one
free block between the two trains. Otherwise, it is difficult to
determine if there is one train or two different trains on the
two adjacent occupied blocks only based on the schedules.

Although equation (4)-(5) can be used to verify and correct
the mislabeled train number caused by an uncertain relation-
ship between the signaling information and the actual train
location based on the characteristics of short-term real-time
schedules with a high reliability, it is assumed that the sched-
ules will be adjusted in time according to the actual traffic
conditions to ensure the train operation is always under con-
trol. However, sometimes the schedules may not be updated
in time because of a heavy workload, some unexpected events
occurring or some other disturbances, such as the train being
delayed but the schedules remain the same or the staff having
insufficient experience to perform the train regulation and
schedule adjustment, etc. This may increase the risk of wrong
schedules being made and lead to an uncertainty between the
schedule time and the actual train arrival and departure time,
which then may result in a mislabeled train number if the
schedules are for used train number verification.

III. PREDICTION MODELING AND FRAMEWORK OF THE
TNT
A. PREDICTION MODELING OF THE TNT
To improve the results of the train number tracking model
based on equation (1)-(5), the uncertainty of the train’s real

location caused by the randomness of real-time signaling
information and schedules, which are the main causes of mis-
labeled train numbers and locations, should be minimized.
Train number tracking can be generalized as a stochastic
process of discrete events in a time series and described with a
hiddenMarkovmodel (HMM). AnHMM is a doubly stochas-
tic process with an underlying stochastic process that is not
observable (it is hidden). It can only be observed through
another set of stochastic processes that produce the sequence
of the observed symbols [10].

As presented in Figure 4, the train movement is an under-
lying stochastic process, which is in accordance with the
Markov assumption (future location only depends on the
current location of the train, independent of the past location)
and can be observed through the signaling state, which is a
stochastic process producing the sequence of the observed
symbols (the signaling information, etc.). By determining the
transition possibilities between the real-train location (hid-
den states) and the mapping information (observed state),
the prediction state (train on or not, same train or not) can
be obtained.

Indirectly inferred through the signaling equipment events,
the train number tracking scenarios can be identified as the
discrete events set in a time series. The relationship between
the hidden states and the observed states could be simply
captured by the probability matrix. The HMMmodel of TNT
could be defined as follows [10]:

1) HIDDEN STATES SET
The series of corresponding unobserved train moving tra-
jectories that emit observed movement feature vectors, can
be defined as H = h0, h1, . . . , ht , with each hidden state
ht coming from a finite set of N states: ht ∈ S, S =
{s0, s1, . . . , sN−1}, which can, for instance, be in accordance
with the states 1© ∼ 4© defined in Figure 3.

2) OBSERVATION STATES SET
This refers to the series of observed train movement features,
defined as V = v0, v1, . . . , vt , where each observation vt is
a vector consisting of serval dimensions of observed train
movement features selected in the HMM model (such as
signaling information or real-time schedules).
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3) STATE TRANSITION MATRIX

A =


ah1h1 ah1h2 · · · ah1hn
ah2h1 ah2h2 ah2hn
...

...
. . .

...

ahnh1 ahnh2 · · · ahnhn


where ahihj = aij = P(ht+1 = sj|ht = s), representing the
probability that the system goes from state si to sj.

4) OBSERVATION PROBABILITY
Given the initial state at t0 and all other states until ti, let
B(ri,j,k ) = p(ri,j,k |s0, . . . , st ) represent the possibility that
train xj is on location dk at time ti; P(ri,j,k |ri−1,j,k−1) repre-
sents the possibility that xj is on dk at ti given the last state
where xj is on dk−1 at ti−1 and the observed state changed to
ak−1 at ti; P(zi,j,k |ri,j,k ) represents the possibility that xj is on
dk but the predicted location is zk at ti. If the observed state
changes to ak−1 at ti and zi,j,k is not yet estimated, the priori
confidence can be expressed as follows:

B−(ri,j,k ) = p(ri,j,k |A(zi−1,j,k−1, ai−1)), (6)

where A(zi−1,j,k−1, ai−1) = {z0,j,0, a0, z1,j,1, a1, . . . ,
zi−1,j,i−1, ai−1}. Once zi,j,k is estimated by ak−1 with equa-
tion (1)-(5), the posterior confidence can be expressed as
follows:

B+(ri,j,k ) = p(ri,j,k |A(zi−1,j,k−1, ai−1), zi,j,k ). (7)

According to the Bayes’ theorem, the priori confidence can
be expressed as follows:

B−(ri,j,k ) =
∑
E

P(ri,j,k |ri−1,j,k−1,A(zi−1,j,k−1, ai−1))

P(rk−1|A(zi−1,j,k−1, ai−1). (8)

The past location of train at ti−1 is independent of the
current observed state changed to ai−1; thus:

B−(ri,j,k ) =
∑
E

(P(ri,j,k |ri−1,j,k−1,A(zi−1,j,k−1, ai−1))

Bel+(ri−1,j,k−1)), (9)

and the past location and future location are inde-
pendent of one another when the current location
is known; thus: P(ri,j,k |ri−1,j,k−1,A(zi−1,j,k−1, ai−1) =

P(ri,j,k |ri−1,j,k−1, ai−1), then:

B−(ri,j,k ) =
∑
E

P(ri,j,k |ri−1,j,k−1, ai−1)B+(ri−1,j,k−1). (10)

According to the Bayes’ theorem, the posterior confidence
can be expressed as follows:

B+(ri,j,k )

=
p(zi,j,k |A(zi−1,j,k−1, ai−1), ri,j,k )p(ri,j,k |A(zi−1,j,k−1, ai−1))

p(zi,j,k |A(zi−1,j,k−1, ai−1))

=
p(zi,j,k |A(zi−1,j,k−1, ai−1), ri,j,k )B−(ri,j,k )

p(zi,j,k |A(zi−1,j,k−1, ai−1))
. (11)

The predicted location only depends on the current train
location, so p(zi,j,k |A(zi−1,j,k−1, ai−1), ri,j,k ) = p(zi,j,k |ri,j,k )
with equations (10) and (13) as follows:

B+(ri,j,k )

=

p(zi,j,k |ri,j,k )
∑
E
P(ri,j,k |ri−1,j,k−1, ai−1)B+(ri−1,j,k−1)

p(zi,j,k |A(zi−1,j,k−1, ai−1))
,

(12)

where the denominator is a normalized constant to ensure the
sum of probability is equal to 1.

Therefore, the posterior confidence could be calculated
by p(zi,j,k |ri,j,k ) and P(ri,j,k |ri−1,j,k−1, ai−1), which could be
obtained through the training of historical traffic data, and the
initial confidence could be set as 1.

The HMM should be trained with a series of observation
samples first, which could then be used to predict and identify
the train location for a given scenario. To obtain more accu-
rate model parameters, large amounts of historical data need
to be used as observation samples, which could be collected
from the CTC system and should be preprocessed first for the
HMM training.

B. ORIGINAL DATA PREPROCESSING
The CTC data to be collected for the prediction model
include static data and the dynamic data. The static data
may include the station layout, railway line parameters,
the original timetable, the train types and the train parameters,
while the dynamic data may include the signaling indication,
the real-time schedules, the weather conditions and the train
arrival and departure time recording (the final timetable).

1) DATA OSCILLATION AND LOSS IMPROVEMENT
The original signaling data collected from the real railway
environment, which always includes some disturbance, need
to be preprocessed first. Generally, one of the most fatal
disturbances is the signaling indication oscillation, which is
where signaling indications change repeatedly during a short
time because of occasional or sudden failure of a transmission
channel, signaling equipment, or other reasons, resulting on
single point data loss. The signaling indication oscillation
and loss leads to a chaotic internal state transition of the
TNT, resulting in a mislabeled train number and abnormal
train location detection. Taking the continuity of movement,
the speed restriction and the exclusivity of train into consid-
eration, it is impossible for a train to travel from one block
to the next block during a very short time, 5 seconds for
instance, or for a block to be immediately occupied by another
train just after one train left. Therefore, the specific signaling
indication should not change quickly and repeatedly during a
very short time. To eliminate the influences of the signaling
indication oscillation and improve the robustness and avail-
ability of TNT, a preprocessed TNT algorithm based on the
above analysis is proposed, as shown in Figure 5.

The data structure should be constructed first. Let each
train step unit store all passing train information during a
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FIGURE 5. Data oscillation and loss improvement algorithm.

specified dynamic moving period of 24 hours. The period is
up to the cycle of same train as specified in the timetable in
order to avoid storing the same train in the memory. There
are two last-in, first-out stacks (InList and OutList) for stor-
ing the arrival trains and the departure trains, respectively.
The data structure of the stored train information, as pre-
sented in Figure 5, includes the train’s unique number (ID)
in the CTC system, the train number (Number), the arrival
time/departure time (Time), the pointer to the specific real-
time schedules (Schedule*), the pointer to the train ahead and
the train behind that are currently traveling the same route and
the same data structure as the stored train information.

Once the collected signaling status information indicates
the block/track dk is occupied but no neighboring train that
matches its moving direction can be found, the latest occupied
train xlatest , which could be obtained from the head of InList,
can be resumed as the current occupied train if the follow-
ing conditions can be satisfied. Otherwise, a fault indication
number and an abnormal location warning will emerge. The
conditions are as follows:
i. xlatest is not in the dk.OutList ;
ii. xlatest and xlatest.Train_behind (if not null) are not in

dk+i.InList , 1 ≤ i ≤ N , where dk+i matches the moving
direction of xlatest , and dk+N is the first block/track
without an abnormal tag;

iii. xlatest.Train_behind , if not null, is not in dk−1.OutList ;
iv. xlatest.Train_ahead , if not null, is in dk+1.InList ;
v. xlatest.Train_ahead , xlatest , xlatest.Train_behind are consistent

with the schedules.
The amount of resumed train numbers could be counted

in the specified period. If the amount exceeds the specified
threshold, the block/track could be identified as a fault and a
warning will emerge.

2) OBSERVATION SAMPLES ACQUISITION
To obtain the feasible observation samples for scenario train-
ing, the filtered signaling data should be carefully classified
for serval scenarios. In this paper, based on the relationship
between the train movement and the signaling indication,

TABLE 2. Typical train movement scenes of each step.

FIGURE 6. Observation sample acquisition.

the train movement of each step monitored by the CTC is cat-
egorized into four scenes, as shown in Table 2, and the TNT
scenario can be developed using simple rules. As most of the
railway facilities, such as signaling equipment, infrastructure,
trains, timetables, etc., will not change over a long period of
time, some specific possible relationships between the train
movement and signaling indication in a specific area could be
identified from the historical data, which is suitable for HMM
training.

Different combinations of any two scenes in Table 2 could
characterize the different scenarios of the current movement
state of the subject train. If the train’s location can be identi-
fied, the internal state of the signaling indication memory of
TNT could be corrected. The train movement trajectory for
the TNT can be generalized as shown in Figure 2.

To acquire more effective observation samples for the
HMM train location prediction training, in addition to the
signaling indication, other factors, such as real-time sched-
ules, weather conditions, train parameters, and travel times of
movement unit should also be considered. Themovement unit
could be defined as the ‘‘signal block’’, which is the distance
between two consecutive signals and can only be occupied
by one train at a time, with an entry by another train into
it blocked by a protecting red signal. If the train’s occupied
time of a signal block exceed the limited maximum time,
TNT should issue an abnormal train location warning, since
the train now could be in an abnormal state caused by train
failure, infrastructure failure or operation failure. Figure 6
refers to the method of obtaining the observation samples
from historical data collected by the CTC.

With the historical signaling status indication and the rail-
way layout, every signal block status that was changed during
the specific history period could be obtained. As in the analy-
sis of section II, the TNT could be designed as an event drive
system, and the event window could be determined according
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FIGURE 7. Prediction modeling procedure of TNT. Noted that ‘‘- - -’’
indicates offline prediction model training and testing procedure, and ‘‘-’’
indicates online real-time prediction procedure.

to the time of the changed signal block status, which rep-
resents the movement step of the train or the preparation of
the train movement. Together with final historical timetable,
which correctly records the train movement trajectory with
the corresponding train number, the train number of every
event window could be determined. Then, with other prop-
erties, such as real-time schedules, weather conditions, travel
times of the signal block, train parameters and line parameters
during the event window period, the observation samples for
training could be acquired.

C. PREDICTION FRAMEWORK OF TNT
Based on the analysis above, a prediction framework is
proposed here for the TNT development, which consists of
two main lines including 1) offline training and testing and
2) online real-time prediction, presented in the flowchart of
Figure 7.

1) OFFLINE TRAINING AND TESTING
Historical data is first processed to obtain the observation
samples (data oscillation elimination and observation sam-
ples acquisition procedure as discussed in Section III-B).
Then, the observation samples are divided into a training set
(75% of all samples) and a testing set (25% of all samples),
which are fed into the training of the HMM-TNT pattern
recognition model (the detailed algorithm is explained in
Section III-A), which constitutes a library of TNTmodels that
would serve as the basis for online prediction.

The performance of the developed TNT prediction model
is finally assessed using the testing samples.

2) ONLINE REAL-TIME PREDICTION
Once the HMMmodel is properly trained offline, online real-
time data of the CTC collected after the data processing could
be fed to the model to decide the best matched scenario and
to predict the train location. Then, the recorded online data
could also be added to the offline database later to improve
the HMM prediction model.

FIGURE 8. Part of the line of the Shijiazhuang-Dezhou Railway for
simulation.

TABLE 3. Testing and training scenarios.

IV. SIMULATION TEST AND ANALYSIS
To verify the effectiveness and the improvement of the pro-
posed TNT prediction model and framework, simulation
experiments are designed with 10 stations (all have at least
four arrival and departure tracks, among which the Shiji-
azhuang and Hengshui stations have more complex station
layouts, shown in Figure 8) from the historical CTC data
collected from the Shijiazhuang-Dezhou Railway in China.
There were 12 passenger trains travelling from Shijiazhuang
Station to Hengshui Station, and 16 from Hengshui Sta-
tion to Shijiazhuang Station every day recorded in histori-
cal CTC data with a total of 3120 train steps (1392 steps
of Shijiazhuang - Hengshui and 1728 Steps of Hengshui -
Shijianzuang). Among which, 15 days of historical data is
selected for offline training and 5 days for testing, and the
timetable remains the same during these 20 days.

To obtain the performance comparison and verify the
improvement of the proposed prediction model and frame-
work, the basic model and the prediction model are pro-
gramed with the C++ language and respectively tested in the
sameCTC simulation environment, which has been applied in
practice in Chinese railways. Additionally, part of the testing
data (such as the signaling equipment status indication) is
intentionally modified, such as the fault injection, to make
every TNT scenario possible in the simulation environment
and under the control. The testing data can then be modified
for the details of the data structure that are available. Table 3
presents one group of TNT scenarios for training and testing.
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TABLE 4. Training results.

During the training phase, with different recorded param-
eters from the training samples, the final TNT feature vari-
ables selected for training the HMM include the signaling,
real-time schedules, traveling times, line parameters and the
weather conditions. Table 4 presents the training results with
the TNT correct rate.

The correct rate RTNT can be calculated as follows:

RTNT = 1− nw
ntotal

. (13)

where ntotal is the total mislabeled train number if only the
signaling TNT algorithm and model are used, and nw is the
mislabeled train number during the test, which is counted
by the number of changed times of the same mislabeled
train during the TNT procedure. The tracked train number
changes once, either from the correct to the incorrect or from
the incorrect to the incorrect and is then counted as one
mislabeled. During the period of mislabeled, it will not be
counted if the train number remains the same.

With the simple disturbance scenarios (as S_1, S_2 and
S_3), the HMM performs well with few features, and
even adds other features that cannot have a better perfor-
mance. However, as the disturbance scenarios become more
complicated (as S_4, S_5 and S_6), the additional features
become more important for obtaining a better improvement.
It seems that the feature of weather does not cause any
improvements from Table 4, because we do not have enough
training samples with specific weather conditions. In fact,
some extreme weather could cause a signaling indication and
train location inconsistency (like heavy rain may cause a
loss of shunting). Therefore, we choose to keep the weather
feature in the HMM training model.

During the comparison phase, one day’s historical CTC
data with a total of 3120 train steps (1392 steps of Shi-
jiazhuang - Hengshui and 1728 Steps of Hengshui - Shi-
jianzuang) is chosen and modified into different versions
with different disturbance scenarios and their combinations
according to the train number tracking analysis results based
on the existing CTC system. Table 5 refers to one of the test
results.

Table 5 shows the TNT correct rate with different algo-
rithms. In the case of non-disturbance, the basic signal-
ing model, signaling and schedule model, and the HMM
model could all track the train number correctly without

TABLE 5. Testing results.

any mislabeling. This is because there is a perfect mapping
relationship between the signaling status and the actual train
location under such conditions. Additionally, the train trav-
eling trajectory is completely consistent with the real-time
schedules.

Then, 5 non-neighbor blocks and 5 non-neighbor tracks
with a platform were set as the fault zone in turn to generate
the disturbance, and the movements of the trains were still
consistent with the real-time schedules. The basic signaling
model mislabeled a train number whenever a train stepped
into these locations, since it is difficult to correctly deter-
mine whether or not there is a train on the fault zone only
based on the signaling constrains. The correspondence is thus
destroyed by the fault zones.

The mislabeled number was reduced by approximately
75% by using the signaling and schedules model under the
condition of the 10 fault zones. This is due to the guidance
of the real-time schedules, which could be used to determine
the train number when the tracks are occupied by the train.
These tracks can be considered as the train number check
point, which should be carefully selected in practice since
it will increase the mislabeled risk if the check point cannot
properly match the schedules. Usually, tracking for the train
arrival, departure and reversal can be considered as the check
point, because a more precise period of track occupancy can
be obtained from the real-time schedules. Once the real-time
schedules fail to synchronize with the actual train trajectory
(train delayed or earlier) and the deviation time exceeds the
specific scheduled time window, the schedule guidance will
fail, and the train number will not be obtained from schedules
or the obtained incorrect train number, which will result in a
significant increase in the number of mislabels, as presented
in Table 5.

The deviation compensations (α1, α2) of the scheduled
time window are important factors for the train number iden-
tification. The simulation test shows that the mislabeled train
number will increase significantly when the value of the
deviation compensations is greater than the headway of the
neighbor trains, which will lead to the train number being
mislabeled because more than one train will be found in the
same scheduled time window. However, if the value of the
deviation compensations is too small, there will be no train
found in the scheduled timewindow once the train is earlier or
delayed. The determination of the value should be calculated
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with a distribution of the train delay. In practice, half of the
headway is usually a better choice.

There is nomislabeled train number when the HMMmodel
is applied in the simulation environment of the non-neighbor
fault zone (none of the mismatched signal blocks are neigh-
bors), which means the model has a good performance in
a single point of failure scenario. We then tested the HMM
model in the condition of several neighbor blocks being set
as the fault zone. As Table 5 shows, the HMM model could
label the train correctly in the condition of no alternative
successor routes. However, the mislabeled number increased
when there were alternative successor routes right next to
the fault zone with several neighbor blocks or the number of
neighbor blocks in one fault zone increased. In fact, under
the condition of serious disturbances, the TNT models listed
above will lead to a high risk of the mislabeled train number.
The probability relationship of the actual train location and
other influencing factors then become extremely complex.
Based on the principle of a fail-safe, labeling a fault indication
number for the train and providing an abnormal location
warning are the better ways to guarantee the safety of the train
operation.

V. CONCLUSION
This paper focuses on the train number tracking problem and
presents a basic mathematical model, HMMpredictionmodel
and a new framework on the basis of the CTC system.

The proposed mathematical model first makes use of the
assumption that the train is traveling in an ideal environment
where the signaling status information can perfectly reflect
the actual train location.

Then, the uncertainty of the mapping relationship between
the signaling status information and the train’s actual location
in the real environment is studied and the real-time schedule
is used to verify and correct the train number based on its
better accuracy in a specific period close to the current time.
To improve the performance of the basic model, an HMM
prediction model is proposed based on the theory of HMM,
where the observed signaling status information and features
could be viewed as the external ‘‘performance’’ of train
movement at a specific time, which in essence reflects the
internal ‘‘hidden states’’ of the system.

Moreover, a data oscillation and loss improvement algo-
rithm and a new prediction framework are proposed. Finally,
simulations of typical train number tracking scenarios are
designed and conducted based on the existing CTC system.
Promising results are obtained in terms of the train num-
ber prediction using the proposed framework based on the
simulations.
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