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a b s t r a c t 

The collaborative task assignment involved in Command and Control Systems is a key problem to be 

solved. The existing researches have their limitations to the natures of dynamic, uncertainty, flexibility 

and cooperation in a defensive scenario. Aiming at these, we formulate a bi-objective multi-stage task 

assignment model. The cooperation between sensor platforms and weapon platforms is considered. Also 

a Soyster robust model is introduced to handle uncertainty in a real time assignment process. Multi- 

objective evolutionary algorithm based on decomposition (MOEA/D) is adopted for the purpose of com- 

mand flexibility. Currently, research focusing on multi-objective heuristics is relatively lacking. In this 

paper, we present a novel constructive heuristic for initializing the population. It successively adds quater- 

nions into the assignment scheme to construct a solution set along the Pareto front, which is an interest- 

ing heuristic framework for multi-objective problems. We have also modified MOEA/D with nadir-based 

Tchebycheff and utilized the proposed neighbor matching strategy to gain better performance. Since algo- 

rithms are sensitive to their parameters, the Taguchi method with a novel response metric is utilized to 

calibrate the parameters. Numerical experiments demonstrate the superiority of the proposed algorithm 

and the necessity of a robust model. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The revolution of network-centric warfare has systematically or-

anized the originally separated combat platforms, thereby achiev-

ng a high level of information sharing and increasing the chance

f more efficient operations. However, the collaborative task as-

ignment of multi-platforms remains an urgent problem that needs

o be solved. Generally, in a Command & Control System (CCS),

ombat platforms can be divided into three categories: sensor plat-

orms (SP), weapon platforms (WP), and Command & Control plat-

orms (CCP). Each part plays an essential role in the completion

f the overall combat mission. From the perspective of the clas-

ic ‘Observe-Orient-Decide-Act’ (OODA) loop developed by Boyd,

P plays the role of ‘Observe’. It acquires battlefield information to

upport the decision making of CCP and provide fire guidance for

P. CCP is the controller of the system, and it plays the roles of
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Orient’ and ‘Decide’ in the OODA loop. WP plays the role of ‘Act’.

nder the command of CCP and the guidance information of the

arget provided by SP, WP performs the task of interception. Infor-

ation is exchanged continuously between different platforms and

orms a complex feedback control chain. Fig. 1 shows a typical in-

ormational combat scenario. The platforms are organized in a dis-

ributed network, and the information of sub-platforms is shared

mong the network centers. The platforms can exchange informa-

ion with a network center to obtain the overall battlefield situa-

ion; thus, any platform is capable of forming effective cooperation

ith others. 

Under the background of network-centric warfare, uncertainty

s an important characteristic, and it exists throughout the com-

at process. In general, the uncertainty in CCS is mainly from two

ayers: 

(1) Bottom execution layer . In this layer, the SP and WP exe-

cute the detection and interception tasks, respectively. The

actual performance of the platforms is influenced by many

factors, such as ambient noise, target interference, and sta-

bility of the platform itself. The effect of execution may be

varied as we have predicted, and this causes uncertainty. The

https://doi.org/10.1016/j.eswa.2019.112844
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Fig. 1. Typical informational combat scenario. 
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uncertainty of the SP is manifested in the capturing proba-

bility, tracking accuracy, etc. The WP is uncertain mainly in

the interception probability. 

(2) Situational decision layer . The situational decision layer

fuses the information from the bottom execution layer to

form a battlefield situation and performs the task assign-

ment based on it. On the one hand, the information from the

bottom execution layer is nondeterministic, inconsistent, and

incomplete; therefore, uncertainty should be an important

feature of fused battlefield situations. On the other hand,

when making assignment decisions, the trails and intents of

the enemy should be inferred. Due to the intelligence and

synergy of the enemy, the accuracy of our inferred results

can be affected, thus introducing uncertainty. 

The aim of this paper is to solve the dynamic task assignment

under uncertainty in a defensive scenario. The main contributions

of this paper can be summarized as follows. Firstly, a bi-objective

dynamic collaborative task assignment model under uncertainty

is formulated, which has considered the cooperation between SPs

and WPs. Secondly, a novel multi-objective constructive heuristic

based on efficiency cost ratio is proposed. The infeasible quater-

nions are deleted based on rules, and the crowding-distance-based

deleting of heuristic individuals maintains the diversity of popu-

lation. Thirdly, several modifications are made on MOEA/D to en-

hance the searching performance during the evolutionary process.

Finally, the Taguchi method with a novel response metric is applied

to calibrate the parameters. 

The outline of the paper is as follows: Section 2 will briefly

review previous work. In Section 3 , we formulate the problem.

Section 4 presents the proposed solution algorithm, MMOEA/D-

Heuristic. Some numerical experiment is carried in Section 5 . The

conclusion and future work are presented in Section 6 . 

2. Related work 

The problem of multi-platform collaborative task assignment

has been studied since the 1950s, and this problem is termed as

the classical weapon target assignment (WTA). Lloyd proved that
TA is an NP-hard problem ( Lloyd & Witsenhausen, 1986 ). Re-

ently, Kline, Ahner, and Hill (2018) reviewed the research on WTA.

ost of the researchers have neglected the influence of SP on WP.

his is applicable when the SP resources are sufficient. However,

he scale of the battlefield keeps expanding, and the generic SP,

hich is independent of WP, appears, thus making it necessary to

ombine SP and WP by performing their task assignment in a col-

aborative manner. Bogdanowicz (2007) developed a model seeking

o maximize the sum of benefits of assigning each sensor to each

arget and each weapon to each target. Jian and Chen (2015) mod-

led the damage probability of an interceptor as the probability

hat a sensor will identify the missile and the destructive capacity

f the paired weapon. Xin, Wang, and Chen (2018) modeled the

robability of successful engagement as the product of the inter-

eptor’s probability of kill and the sensor’s probability of detection.

The collaborative task assignment consists of two versions:

tatic and dynamic. It was firstly proposed by Hosein and

thans (1990b) during his research on WTA. The static version

sually refers to the models that finish the assignment in a sin-

le step, while the dynamic version considers the dynamic ad-

ustment during the assignment process, which can be considered

s a repetition of the OODA loop. Previous studies have focused

n the static version ( Ahuja, Kumar, Jha, & Orlin, 2007; Hosein &

thans, 1990a; Kwon, Kang, Lee, & Park, 1999; Kwon, Lee, Kang, &

ark, 2007; Manne, 1958; Shang, Zaiyue, Xiaoru, & Cungen, 2007 );

owever, recently, dynamic models have attracted considerable at-

ention ( Ahner & Parson, 2015; Hosein & Athans, 1990b; Khosla,

001; Li, Chen, & Xin, 2015; Li, Chen, Xin, Dou, & Peng, 2016; Xin,

hen, Zhang, Dou, & Peng, 2010 ). A dynamic assignment model is

ore than just multiple repetitions of a static assignment model.

t considers the time window and aims to find the global opti-

al assignment scheme. The introduction of time window makes

his problem much more complicated. Khosla (2001) considered

he time window in the study of firepower allocation, and he took

aunch time as a variable to be optimized. A hybrid genetic algo-

ithm combining the simulated annealing was proposed to solve

his problem. However, the time window was divided into very

hort pieces, resulting in large optimization spaces, and hence it

s not suitable for practical use. The multi-stage model is another
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Fig. 2. Dynamic process of collaborative task assignment. 
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ay to consider the time window. Hosein and Athans (1990b) con-

ucted early research and proposed a two-stage dynamic assign-

ent model. Xin et al. (2010) proposed a multi-stage asset-based

ssignment model. It divides the combat process into several inde-

endent combat stages and optimizes the remaining stages. This

ind of dynamic model is close to reality and simpler than the

odel proposed by Khosla. 

Robust and stochastic optimization is a technology developed

o reduce the influence of uncertainty. It has been applied in

ome task assignment problems. The uncertainty of the intercep-

ion probability in WTA was studied by Krokhmal, Murphey, Parda-

os, Uryasev, and Zrazhevski (2003) utilizing the CVaR constraint.

he uncertainty of the target number was modeled as a two-stage

tochastic assignment process. Ahner and Parson (2015) considered

he possible number of targets in the second stage, and the ex-

ected value of the second stage was included in the objective.

 robust optimization model for the uncertainty of interception

robability was proposed in Li et al. (2016) . Most of these robust

ssignment models are scenario-based. The robustness relies on

he number of scenarios, which result in more computational bur-

en. 

As for the study of MOEAs, Schaffer (1985) designed VEGA dur-

ng the mid-1980s and it is considered to be the first MOEA. Af-

er that, many representative MOEAs have been proposed. NSGA-II

 Deb, Agrawal, Pratap, & Meyarivan, 20 0 0 ) proposed by Deb is one

f the most successful MOEAs that use fast non-dominated sorting

nd the crowding distance. Recently, a branch of MOEA based on

ecomposition has become increasingly popular. It decomposes a

ulti-objective problem into a set of scale subproblems and opti-

izes them simultaneously. Zhang and Li (2007) proposed the ear-

iest version of MOEA/D. Many researchers have focused on (1) de-

omposition method ( Cai, Mei, Fan, & Zhang, 2018; Chen, Li, & Xin,

017; Yang, Li, Liu, & Zheng, 2013; Zhang, Li, Maringer, & Tsang,

010 ), (2) adaptive mechanism ( Chiang & Lai, 2011; Qi et al., 2014;

ang, Zhang, Zhou, Gong, & Jiao, 2016; Zhang, Liu, & Li, 2009 ), and

3) combination with other state-of-art algorithms or local search

ethods ( Alhindi & Zhang, 2014; Ke, Zhang, & Battiti, 2013; Tan,

iao, Li, & Wang, 2012; Wang & Cai, 2015; Zapotecas-Martínez et al.,

015 ). Some researchers have used MOEAs to solve task assign-

ent problems ( Li et al., 2015; Li, Kou, & Li, 2018; Li, Kou, Li, Xu,

 Chang, 2017 ). 

In MOEAs, many parameters are involved. The performance of

he algorithm is very sensitive to these parameters, and they need

e fined-tuned for optimal performance. Xu and Mei (2018) did

 full factorial experiment to the sensitive analysis of parameters.

owever, It is an onerous work for researchers to test all the com-

inations of parameters. Taguchi method is a fractional factorial

xperiment, which was proposed by Taguchi as an efficient alter-

ative for the full factorial experiment. It has been a common ap-

roach for calibration of MOEA recently ( Ding, Chen, Xin, & Parda-

os, 2018; Fattahi, Hajipour, & Nobari, 2015; Mousavi, Sadeghi, Ni-

ki, & Tavana, 2016 ). 

Due to the difficulty of efficiently solving large scale task as-

ignment problems, many heuristic algorithms have been designed.

adni and Andrecut (2012) presented two heuristic algorithms,

amely simulated annealing and threshold accepting, to solve

TA. They were compared with the solution of relaxed WTA using

aximal marginal return algorithm. Ahuja et al. (2007) proposed a

etwork-flow-based construction heuristic and a VLSN search algo-

ithm to solve the WTA problem. Xin et al. (2010) designed a vir-

ual permutation and tabu search heuristics. Xin et al. (2018) pro-

osed a marginal-return-based constructive heuristic to solve the

ensor-weapon-target assignment problem. Chang, Kong, Hao, Xu,

nd Yang (2018) used an improved artificial bee colony algorithm

ith a heuristic factor initialization to solve WTA. 
. Problem formulation 

The combat scenario considered in this paper is narrated as fol-

ows. The defender has Q sensor platforms and W weapon plat-

orms to defend an asset. They are connected by networks and can

ombine with each other to finish a task collaboratively. At a cer-

ain time, T incoming targets appear and aim at the asset. Before

he enemy finishes the attack, the defender has a time interval to

ntercept these targets, which can be divided into several stages

ith a fixed length. A stage is the minimum combat time unit. As-

ume that there are S stages. As shown in Fig. 2 , S t and S t+1 are the

eginning times of stages t and t + 1 , respectively. During stage t ,

he WPs and SPs accept the assignment scheme from CCP at S t ,

nd execute their task from S t to S t+1 . The CCP should monitor dy-

amic events, such as new targets appearing and old targets being

estroyed, and adjust its action accordingly. There is a certain time

elay between the occurrence of dynamic events and the response

f WPs and SPs. The red points represent the dynamic events that

ere responded to in stage t + 1 , and the gray point represents the

vent that was responded to in the previous stage. CCP collectively

rocesses the dynamic events before a certain time of the next

tage and sends the command to the execution platforms. From

he figure, it can be seen that the factors that affect the time delay

f the response to the dynamic events are the replanning time, the

ommand delay, and the length of each stage. 

The scheme of WPs is denoted by X = [ x sik ] S×W ×T , where x sik =
 if the i th WP is allocated to the k th target at stage s , and 0 other-

ise. The scheme of SPs is denoted by Y = [ y s jk ] S×Q×T , where y sjk 

 1 if the j th SP is allocated to the k th target at stage k , and 0

therwise. For ease of reading, Table 1 summarizes all the nota-

ions that are used throughout this paper. 

.1. Deterministic model 

(1) Objective 

q jk ( s ) is used to denote the tracking performance of the j th

SP to the k th target at stage s , and p ik ( s ) is used to denote

the probability that the k th target is destroyed by the i th

WP at stage s under the condition that the k th target gets

a high quality of tracking. Thus, the tracking performance to

the k th target at stage s is 

Q k (s ) = 1 −
Q ∏ 

j=1 

(1 − q jk (s )) y s jk . (1)

The destroying probability of the k th target at stage s with

high quality of tracking is 

P k (s ) = 1 −
W ∏ 

i =1 

(1 − p ik (s )) x sik . (2)
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Table 1 

Notations. 

S, W, Q, T the number of stages, WPs, SPs and targets respectively 

q jk ( s ) the tracking performance of j th SP to k th target at stage s 

p ik ( s ) the destroying probability of i th WP to k th target at stage s under effective guidance. 

Q k ( s ) the comprehensive tracking performance to k th target at stage s 

P k ( s ) the comprehensive destroying probability to k th target at stage s under effective guidance. 

v k the threat value of k th target 

c i the cost of i th WP when operating in a single stage 

d j the cost of j th SP when operating in a single stage 

f sik f sik = 1 if k th target can assigned to i th WP at stage s , 0 otherwise 

f sjk f s jk = 1 if k th target can assigned to j th SP at stage s , 0 otherwise 

n i the maximum number of targets that can be assigned to i th WP at each stage. 

m j the maximum number of targets that can be assigned to j th SP at each stage. 

F i the amount of remaining ammunition of i th WP 

N sik the required number of continuous stages of guidance to target k when it is assigned to i th weapon at stage s 

γ iks the uncertain degree of destroying probability for i th WP to intercept k th target at stage s 

γ jks the uncertain degree of tracking performance for j th SP to track k th target at stage s 

ξ the uncertain parameter which is non-determinate before actual happening 

σ the robust regulatory factor 

X = [ x sik ] the decision matrix of WPs. x sik = 1 when target k is assigned to i th WP at stage s , 0 otherwise 

Y = [ y s jk ] the decision matrix of SPs. y s jk = 1 when target k is assigned to j th SP at stage s , 0 otherwise 
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Influenced by the tracking performance, the destroying

probability of the k th target at stage s is P k ( s ) Q k ( s ). The

threat value of the k th target is denoted by v k , which is

mainly composed of the capability threat and the intent

threat and can be evaluated according to the battlefield sit-

uation. Thus, the total threat elimination from stage t to the

final stage S is 

F 1 (t) = 

T ∑ 

k =1 

v k 

( 

1 −
S ∏ 

s = t 
(1 − P k (s ) Q k (s )) 

) 

. (3)

Assume that each platform possesses only one type of com-

bat resource. The i th WP and the j th SP cost c i and d j to op-

erate in a single stage, respectively. Thus, the total cost from

stage t to the final stage S is given by 

F 2 (t) = 

S ∑ 

s = t 

T ∑ 

k =1 

( 

W ∑ 

i =1 

c i x sik + 

Q ∑ 

j=1 

d j y s jk 

) 

. (4)

Through the above analysis, we get two optimization objec-

tives: 

max F 1 (t) , min F 2 (t) . (5)

(2) Constraints 

x sik ≤ f sik ∀ s ∈ I S , i ∈ I W 

, k ∈ I T , (6)

y s jk ≤ f s jk ∀ s ∈ I S , j ∈ I Q , k ∈ I T , (7)

T ∑ 

k =1 

x sik ≤ n i ∀ s ∈ I S , i ∈ I W 

, (8)

T ∑ 

k =1 

y s jk ≤ m j ∀ s ∈ I S , j ∈ I Q , (9)

S ∑ 

s = t 

T ∑ 

k =1 

x sik ≤ F i ∀ i ∈ I W 

, (10)

min (S,s + N sik −1) ∑ 

t= s 
I 

( 

Q ∑ 

j=1 

y t jk > 0 

) 

= N sik x sik , 

∀ s ∈ I S , i ∈ I W 

, k ∈ I T , (11)
I W 

= { 1 , 2 , . . . , W } , I Q = { 1 , 2 , . . . , Q} , 

I T = { 1 , 2 , . . . , T } , I S = { 1 , 2 , . . . , S} . 
The constraint sets (6) and (7) represent the feasibility of

WP and SP. Here, f sik = 1 if the i th WP can engage with the

k th target at stage s , and 0 otherwise. f s jk = 1 if the j th SP

can track the k th target at stage s , and 0 otherwise. The con-

straint sets (8) and (9) limit the maximum number of targets

WP and SP can engage or track in a single stage respectively.

It depends on the number of channels they have. A platform

with multiple channels can be regarded as multi platforms

with a single channel; therefore, n i and m j are set to 1 in

this paper. The constraint set (10) consists of the ammuni-

tion constraints. F i is the remaining ammunition of the i th

WP. The constraint set (11) is the continuous guidance con-

straint set, which shows that when the WP is intercepting

a target, we should guarantee several stages of tracking or

illumination to the target in order to observe whether it is

destroyed or to guide weapon towards it. N sik is the num-

ber of stages that the k th target needs to be tracked since

stage k , if it is assigned to the i th WP at this stage. N sik is

determined by the time interval between the launching of a

weapon and the interception with the aiming target. Func-

tion I(·) = 1 if the inequality in the parentheses is true, and

0 otherwise. In most studies, the tracking task of the SP and

the launching task of the WP are thought to be completed

in a single stage. However, the launching time of the WP is

relatively fixed while the tracking time of the SP varies sig-

nificantly, especially for missile weapons with a wide range

of defenses, and the relay guidance is needed sometimes. 

(3) Model 

The deterministic model is given as follows: 

max F 1 (t) , min F 2 (t) , 

s . t . (6) , (7) , (8) , (9) , (10) , (11) . (12)

emark 1. The proposed model divides the defense time interval

nto several fixed stages. The length of each stage is flexible and

an be determined according to the actual situation. A minimum

ength is required to ensure that the platforms can operate effec-

ively at each stage. With the increase in the stage length, the com-

lexity of our model decreases, and when the length of a stage is

qual to the defense time interval, the model becomes a static ver-

ion of the assignment model. 
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emark 2. The above model holds an important assumption. That

s, the destroying probability is not influenced by the SPs used

o track or illuminate in the following stages after the weapon

s launched. This is reasonable since missiles usually have termi-

al active guidance or the purpose of observation does not require

ood tracking performance. 

.2. Robust model 

The traditional collaborative task assignment model requires

he parameters to be accurately known. However, due to the in-

erference effects of many factors in the real world, errors are in-

vitable from both modeling and parameter acquisition, and the

eterministic assumption is no longer valid. Therefore, this paper

onsiders a robust model, which mainly focuses on the uncertainty

rom the bottom execution layer as mentioned before. 

The execution uncertainty of WPs and SPs is influenced by

any kinds of stochastic or non-stochastic factors. Rapid changing

nvironments such as wind and humidity are the main stochastic

actors. Different targets have different maneuverability and reflec-

ion cross-sectional areas, which makes the execution performance

eviate from the theoretical value. The target and the execution

latform inherently determine this deviation, which is a kind of

on-stochastic factor. An assumption on execution uncertainty is

ade here: The real performance of the SP and WP occur within a

ertain range of theoretical value due to uncertainty factors. 

p ik (s, ξ ) ∈ [(1 − γiks ) p ik (s ) , (1 + γiks ) p ik (s )] , 

 jk (s, ξ ) ∈ [(1 − γ jks ) q jk (s ) , (1 + γ jks ) q jk (s )] , 

here γ iks represents the degree of uncertainty for the i th WP to

ntercept target k at stage s. γ jks represents the degree of uncer-

ainty for the j th SP to track target k at stage s . The range can

e estimated from historical data, current environmental condition,

tc., and the basic idea of robust optimization techniques is mak-

ng the best decision under the worst condition. Thus, the objective

unction F 1 with uncertain parameters becomes: 

 

′ 
1 (t) = min 

ξ

T ∑ 

k =1 

v k 

( 

1 −
S ∏ 

s = t 
( 1 − P k (s, ξ ) Q k (s, ξ ) ) 

) 

, (13)

 k (s, ξ ) = 1 −
W ∏ 

i =1 

(1 − p ik (s, ξ )) x sik , (14)

 k (s, ξ ) = 1 −
Q ∏ 

j=1 

(1 − q jk (s, ξ )) y s jk , (15)

The function above is scenario-based. A good approximation of

he uncertainty requires a large number of scenarios, which in-

rease the computational burden. A Soyster robust ( Soyster, 1973 )

odel was first proposed to solve the box uncertain interval in

ncertain linear programming. A modified Soyster model is given

n Bertuccelli, Alighanbari, and How (2004) , which is more flexible

han the original. By utilizing this, F 1 becomes 

 

′′ 
1 (t) = 

T ∑ 

k =1 

v k 

( 

1 −
S ∏ 

s = t 

(
1 − P 

′′ 
k (s ) Q 

′′ 
k (s ) 

)) 

, (16)

 

′′ 
k (s ) = 1 −

W ∏ 

i =1 

(1 − (1 − σγiks ) p ik (s )) x sik , (17)

 

′′ 
k (s ) = 1 −

Q ∏ 

j=1 

(1 − (1 − σγ jks ) q jk (s )) y s jk , (18)
here σ ∈ [0, 1] is the robust regulatory factor. The proposed ro-

ust model is given as follows: 

ax F 
′′ 

1 (t) , min F 2 (t) , s . t . (6) , (7) , (8) , (9) , (10) , (11) . (19) 

emark 3. A necessary condition of the proposed model is that

he objective function F 1 is monotonic with respect to each param-

ter. The model becomes more flexible with parameter σ . When

= 1 , the proposed model is equivalent to the max-min robust

odel, and when σ = 0 , it becomes a deterministic model. As σ
ncreases from 0 to 1, the robustness is generally enhanced with

he price of decreasing expectation. 

.3. NP-Hardness 

heorem 1. The proposed bi-objective problem is NP-hard. 

roof. The proof details are given in Appendix A . �

. MOEA/D optimizer 

Since the problem is NP-hard, there is no polynomial-time al-

orithm to obtain the exact solution. MOEA/D ( Zhang & Li, 2007 ),

roposed by Zhang et al., has attracted considerable attention re-

ently. This framework aims to decompose a multi-objective prob-

em into a set of scalar subproblems and optimizes them simul-

aneously. MOEA/D offers a clear and extensible framework that

tilizes the neighbor structure. Hence, we mainly focus on study-

ng this framework. It should be noted that the solving efficiency is

ery important in a real battlefield situation. For this purpose, sev-

ral effort s are made to enhance the performance of MOEA/D. First,

 solution representation based on the coding table is designed.

econd, a multi-objective constructive heuristic initialization based

n efficiency-cost ratio is proposed. Third, two main modifications

re made on the general MOEA/D framework, which are the nadir-

ased Tchebycheff approaches and the neighbor matching strat-

gy (NMS), to enhance the process of generating and selecting

f offspring. The framework of the modified MOEA/D is given in

lgorithm 1 . We will discuss in detail in the following subsections.

.1. Solution representation 

Decimal coding is employed in this paper. We apply a bit more

ffort and ensure that the solution satisfies the constraint sets (6)–

9) naturally. To achieve this, two coding tables are first built based

n the model parameters. 

Weapon-stage table (WS) : W S is = { t 1 , t 2 , . . . t l is } , i ∈ I W 

, s ∈ I S 
numerates all the targets that can be assigned to the i th WP at

tage s . 

Sensor-stage table (QS) : QS js = { t 1 , t 2 , . . . t l js } , j ∈ I Q , s ∈ I S enu-

erates all the targets that can be assigned to the j th SP at stage

 . 

The conditions that restrict a target from being assigned to a

latform can be summarized as follows: 

Condition 1 : Both the WS table and the QS table should satisfy

he feasibility constraint sets (6) and (7) . For the WS table, target k

an be included in WS is only when f sik = 1 . For the QS table, target

 can be included in QS js only when f s jk = 1 . 

Condition 2 : The WS table should satisfy the ammunition con-

traint set (10) . When F i = 0 , no target will be included in WS is for

ny stage s . 

Condition 3 : We should guarantee the feasibility of the contin-

ous guidance constraint before a target is added to the WS table.

r ( s, k ) is used to denote whether there is any sensor platform that
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Algorithm 1 The framework of the modified MOEA/D . 

1: Initialize the Population Pop = { I 1 , . . . , I P } using Algorithm 4, 

where P is the population size. Evaluate the fitness F = 

{ F 1 , . . . , F P } of Pop. 

2: Generate P evenly distributed weight vectors λ = { λ1 , . . . , λP } . 
Obtain T neighbors of each subproblem using the Euclidean 

distances between weight vectors. Denote by B (i ) = { i 1 , . . . , i T } 
the neighbor set of the i th subproblem. 

3: z i = min j (F i 
j 
) , z nad 

i 
= max j (F i 

j 
) , i = 1 , . . . , m . 

4: Initialize R i j and Inc i j . 

5: while maximum generation G is not reached do 

6: R i j = R i j Inc i j , i = 1 , . . . , N, j = 1 , . . . , N. 

7: for each subproblem i do 

8: Two parents p 1 , p 2 are selected by Algorithm 5. 

9: An offspring o is generated using Algorithm 6. And we 

evaluate its fitness f . 

10: z i = min (z i , f i ) , z 
nad 
i 

= max (z nad 
i 

, f i ) , i = 1 , . . . , m 

11: For all individuals, ˜ F i = 

F i −z i 
z nad 

i 
−z i 

, i = 1 , . . . , m . 

12: for each subproblem j ∈ B (i ) do 

13: if g nte ( ̃  F j | λ j , 0) < g nte ( ̃  f | λ j , 0) then 

14: I j = o, F j = f . 

15: end if 

16: end for 

17: end for 

18: end while 

19: Output the final population P and its Fitness F. 
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can track target k at stage s . 

T r(s, k ) = I 

( 

Q ∑ 

j=1 

f s jk 

) 

. (20)

Target k is an element of WS is table when the following equa-

tion holds. 

min (S,s + N sik −1) ∑ 

t= s 
T r(t, k ) = N sik . (21)

Based on the above three conditions, WS and QS tables are built

according to Algorithm 2 . 

Algorithm 2 Build coding table. 

Input: { f sik } , { f s jk } , { F i } , { N sik } . 
Output: W S, QS. 

1: Calculate T r by Eq. (20). 

2: Set W S is = ∅ and QS js = ∅ for all i, j, k . 

3: for each quaternion (s, i, j, k ) do 

4: if (s, i, k ) satisfy Condition 1, 2, and 3 then 

5: W S is = W S is ∪ k . 

6: end if 

7: if (s, j, k ) satisfy Condition 1 then 

8: Q S js = Q S js ∪ k . 

9: end if 

10: end for 

The WS table and QS table eliminate the impossible allocation

cases to the maximum extent. In an actual combat situation, most

targets cannot be allocated to a platform in all stages. Therefore,

the searching space is limited. 

By utilizing the coding tables, the solution representation is

presented in Fig. 3 . The value at each locus represents the index of

the target at the corresponding coding table, and its value ranges

from 0 to the size of the coding table. As shown in Fig. 3 , the

WS table corresponding to the W th weapon platform at stage 1
s {1, 3, 6, 7}. Thus, at this locus, the integer value varies from 0

o | W S W 1 | = 4 . If this value is 2, the assigned target can be found

y looking up WS W 1 and it is found that target 3 is assigned to

he W th weapon platform at stage 1. If the value at each locus

s 0, then no target is assigned. In this way, the constraint sets

6)–(9) are always satisfied, and some impossible allocation case

s avoided. 

.2. Heuristic initialization based on efficiency-cost ratio 

The initial population is very important for any swarm opti-

ization algorithm. Both quality and diversity should be guaran-

eed. An efficient way to initialize the population is by utilizing

he domain knowledge. Most of the current researches on heuristic

trategies for solving task assignment problems focus on a single

bjective. In Xin et al. (2018) , a marginal-return-based constructive

euristic is proposed to solve a static sensor-weapon-target assign-

ent problem, and it obtains very good performance. We extend

his framework to a multi-objective version and propose a novel

euristic initialization strategy to construct a hybrid population. 

For simplicity, we neglect the continuous guidance constraint

hen constructing an initial heuristic population. It will be fixed

urther using a repairing technique introduced in the following

ubsection. In this manner, at a certain stage, it will be pointless

o assign one type of platform to a target. When only one type of

latform, SP or WP, is assigned to target k at stage s , then we have

 k (s ) = 0 or Q k (s ) = 0 ; thus, P k (s ) Q k (s ) = 0 . The assigned platform

as no contribution to the improvement of the total efficiency but

dds to the costs. In view of these facts, the quaternion ( s, i, j, k )

s introduced to show that weapon platform i and sensor platform

 are assigned to target k at stage s simultaneously if it is added to

he assignment scheme X and Y . All the possible quaternions will

e enumerated and considered. In this way, the case that only one

ype of platform is assigned to a target can be avoided. We denote

he set of all available quaternions as AQS . We can further initialize

QS using the WS table and QS table shown in Algorithm 3 . 

lgorithm 3 Initialize AQS. 

nput: W S, QS. 

utput: AQS. 

1: AQS = ∅ . 
2: for each quaternion (s, i, j, k ) do 

3: if k is in W S is and QS js then 

4: AQS = AQS ∪ (s, i, j, k ) . 

5: end if 

6: end for 

The basic idea of our proposed heuristic initialization strategy is

o add these quaternions into an empty assignment schemes X and

 successively in order to iteratively construct a limited number of

ndividuals for the initial population. There are two main problems

o be solved. 

(1) How to select a quaternion from AQS to add it into the as-

signment scheme and then delete the invalid quaternions in

AQS to accelerate the process. 

(2) If the number of constructed individuals exceeds our limita-

tion, how to delete some of them while maintaining diver-

sity. 

A direct method for solving problem (1) is to select one quater-

ion with the optimal efficiency-cost ratio (ECR). For the empty as-

ignment schemes X and Y , where all elements x sik and y sjk are set

o 0, and AQS , we denote P m,k (s ) = 1 − P k (s ) , Q m,k (s ) = 1 − Q k (s ) . It

s obvious that P m,k (s ) = 1 and Q m,k (s ) = 1 initially. If quaternion

 s, i, j, k ) ∈ AQS is to be added into current assignment schemes
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WP1

Stage1 … StageS

WPW SP1 SPQ

Stage1 … StageS Stage1 … StageS Stage1
… StageS

WSW1

Target 3 is assigned

No target is assigned

Fig. 3. Solution representation. 
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 and Y , then P m,k ( s ) and Q m,k ( s ) will become 

 

′ 
m,k (s ) = P m,k (s )(1 − p ik (s )) 1 −x sik , (22)

 

′ 
m,k (s ) = Q m,k (s )(1 − q jk (s )) 1 −y s jk . (23)

It is clear that there is a gain for both the objectives of

he model after this quaternion is added. The gain is termed as

arginal return in Xin et al. (2018) . We also accept this concept in

his paper, and the efficiency-cost ratio δsijk of this quaternion can

e given as 

si jk = 

MR (F 1 ) 

MR (F 2 ) 
, (24) 

here MR ( F 1 ) and MR ( F 2 ) are the marginal returns of the first

nd second objectives, respectively. They are calculated using

q. (25) and Eq. (26) . 

R (F 1 ) = v k 

( 

S ∏ 

s = t 

(
1 − (1 − P m,k (s ))(1 − Q m,k (s )) 

)

−
S ∏ 

s = t 

(
1 −

(
1 − P 

′ 
m,k (s ) 

)(
1 − Q 

′ 
m,k (s ) 

))) 

, (25) 

R (F 2 ) = c i (1 − x sik ) + d j (1 − y s jk ) . (26)

This ratio represents the marginal return of unit cost for each

uaternion. We obtain the efficiency-cost ratios of all quaternions

n AQS . Then the optimal quaternion is selected as follows: 

(s ∗, i ∗, j ∗, k ∗) = arg max 
(s,i, j,k ) ∈ AQS 

{ δsi jk } . (27)

This selected quaternion is added to the assignment schemes

 and Y . We realize this by setting x s ∗i ∗k ∗ = 1 and y s ∗ j ∗k ∗ = 1 . Af-

er the optimal quaternion is added, some quaternions in AQS will

ecome infeasible considering the constraints. We should find out

nd delete them to accelerate our algorithm. Generally, We have

he following three rules to update AQS after ( s ∗, i ∗, j ∗, k ∗) is added.

Rule 1 : Weapon platform i ∗ cannot be assigned to any other

arget except k ∗ at stage s ∗. 

Rule 2 : Sensor platform j ∗ cannot be assigned to any other tar-

et except k ∗ at stage s ∗. 

Rule 3 : The remaining ammunition of the i ∗th weapon platform

s denoted as F 
′ 

i ∗ . If F 
′ 

i ∗ = 0 , it cannot be assigned to any other tar-

et. 

The process of adding a quaternion and updating AQS loops un-

il AQS becomes empty. For the given assignment schemes X, Y and

he updated AQS , the assignment scheme after ( s, i, j, k ) ∈ AQS is de-

oted as { X, Y } ( s,i,j,k ) . { X, Y } (s ∗,i ∗, j ∗,k ∗) is always non-dominated com-

ared to other { X, Y } ( s,i,j,k ) . This property guarantees that adding the

uaternion with the maximum efficiency-cost ratio will generate a

ocal optimal scheme in our multi-objective problem. 
It should be noted that when calculating the marginal return of

he two objectives, we do not have to calculate the whole objective

alue of the assignment scheme before and after a quaternion is

dded. We need to calculate only the incremental part. P m,k ( s ) and

 m,k ( s ) will be updated when a new quaternion is added. There-

ore, the previously added quaternions do not have to be recalcu-

ated. These designs reduce the computational burden needed to

alculate the efficiency-cost ratios and speed up the initialization

rocess. 

Each time a new quaternion is added, a new scheme with dif-

erent costs is generated. We can convert it into the form of solu-

ion representation and add it into the heuristic population. If the

ize of the heuristic population exceeds our limit, then problem

2) occurs. To maintain diversity, we borrow the concept of crowd-

ng distance in NSGA-II, where the position of each individual is

efined as the number of added quaternions in the scheme. The

loser these numbers are, the more similar they are. We delete the

ndividual with minimum crowding distance to keep the size of

he heuristic population within our limit. The details of construct-

ng the initial population, which is a hybrid of the heuristic and

he randomly generated population, are given in Algorithm 4 . 

The time complexity of the heuristic initialization at each loop

ainly depends on the size of AQS , which is L . The worst time

omplexity happens when the WPs have sufficient ammunition

nd the feasibility constraints are always satisfied. Thus, at the be-

inning, the size of AQS is ( S · W · Q · T ). Since AQS is determined,

he time complexity mainly depends on the number of deleted

uaternions in AQS in each loop. The less we delete, the more rep-

titions will run. There are ( W · Q · T ) quaternions related to stage

 . If the first quaternion related to stage s is added, A 1 = Q(T −
) + (W − 1)(T − 1) + 1 quaternions will be deleted from AQS. The

inimum number of deletions for the following (Q − 1) times of

he loop is A 2 = (W − 1)(T − 1) + 1 . For the remaining (W − 1) Q

uaternions related to stage s , we can only delete one in each loop.

hus, the maximum number of loops is ( S · W · Q ). In the worst con-

ition, L at m th loop can be calculated as follows: 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

α β = 0 , 

α − A 1 β = 1 , 

α − A 1 − A 2 (β − 1) β = 2 , . . . , Q, 

α − A 1 − A 2 (Q − 1) − β − Q β = Q + 1 , . . . , W · Q − 1 , 

= (S − mod(m − 1 , W · Q )) · W · Q · T , 

= (m − 1) / (W · Q ) . 

By summing up L of all loops, the time complexity of the

euristic initialization is O ( S 2 W 

2 Q 

2 T ). Actually, the worst condition

s unlikely to happen, and the algorithm can achieve better perfor-

ance than the theoretical value. 
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Algorithm 4 Heuristic initialization based on ECR. 

Input: W S, QS, { F i } , { p ik (s ) } , { q jk (s ) } , Maximum size of heuristic 

population ( U), Size of hybrid population ( P ). 

Output: Hybrid population ( HP ). 

1: HP = ∅ , Position = ∅ . 
2: Initialize AQS using Algorithm 3. 

3: x sik = 0 , y s jk = 0 , for all s, i, j, k . 

4: sol = zeros (1 , S · (W + Q )) //an empty solution represented by a 

one-row zero vector. 

5: count = 0 . 

6: L = | AQS| . 
7: F 

′ 
i 

= F i , i = 1 , . . . , W . 

8: P m,k (s ) = 1 , Q m,k (s ) = 1 , k = 1 , . . . T , s = 1 , . . . , S. 

9: while L > 0 do 

10: for l from 1 to L do 

11: (s l , i l , j l , k l ) = AQS(l, :) . 

12: δs l i l j l k l 
= M R (F 1 ) /M R (F 2 ) . 

13: end for 

14: l ∗ = arg max l { δs l i l j l k l 
} . 

15: (s ∗, i ∗, j ∗, k ∗) = the l ∗th quaternion in AQS. 

16: F 
′ 

i ∗ = F 
′ 

i ∗ − (1 − x s ∗i ∗k ∗ ) . 
17: for l from 1 to L do 

18: (s l , i l , j l , k l ) = AQS(l, :) . 

19: if s l = s ∗ and i l = i ∗ and k l 	 = k ∗ then 

20: delete the lth quaternion in AQS(Rule 1). 

21: else if s l = s ∗ and j l = j ∗ and k l 	 = k ∗ then 

22: delete the lth quaternion in AQS(Rule 2). 

23: else if F 
′ 

i l 
= 0 and x s l i l k l = 0 then 

24: delete the lth quaternion in AQS(Rule 3). 

25: end if 

26: end for 

27: Delete the l ∗th quaternion in AQS. 

28: L = | AQS| . 
29: P m,k ∗ (s ∗) = P m,k ∗ (s ∗)(1 − p i ∗k ∗ (s ∗)) 1 −x s ∗ i ∗k ∗ . 

30: Q m,k ∗ (s ∗) = Q m,k ∗ (s ∗)(1 − q j ∗k ∗ (s ∗)) 1 −y s ∗ j ∗k ∗ . 

31: x s ∗i ∗k ∗ = 1 , y s ∗ j ∗k ∗ = 1 . 

32: count = count + 1 . 

33: Add (s ∗, i ∗, j ∗, k ∗) into sol to construct a new solution. 

34: HP (end + 1 , :) = sol. 

35: Position (end + 1) = count . 

36: if | HP | > U then 

37: CD (1) = In f, CD (| HP | ) = In f . 

38: for n from 2 to | HP | − 1 do 

39: CD (n ) = Position (n + 1) − Position (n − 1) . 

40: end for 

41: n ∗ = arg min n CD (n ) . 

42: delete n ∗th element in HP and Position . 

43: end if 

44: end while 

45: Randomly insert P − | HP | individuals that are randomly gener- 

ated into HP . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Modification of MOEA/D framework 

In this subsection, we modify the general MOEA/D framework

with nadir-based Tchebycheff approach and propose a novel neigh-

bor matching strategy for the purpose of generating and selecting

more promising individuals during the evolutionary process. 

(1) Ideal-based and Nadir-based Tchebycheff approach 

As MOEA/D is widely studied, many decomposition methods

have been proposed, such as weighted sum, Tchebycheff ap-

proach, PBI approach ( Zhang & Li, 2007 ), NPI-style Tcheby-

cheff approach ( Zhang et al., 2010 ), ε-constraint approach

( Chen et al., 2017 ), grid-based approach ( Cai et al., 2018 ), etc.
They all have their own advantages and disadvantages and

need to be chosen according to the specific problem. Here,

we mainly discuss the Tchebycheff approach. 

The original Tchebycheff approach is ideal-based, which

means that the scalar subproblems are optimized towards

the ideal point. Refer ( Zhang & Li, 2007 ) for more details

about this approach. There are two main drawbacks of the

ideal-based Tchebycheff approach. 

(1) The population is crowded in a small area of the PF

for a large searching space. This can be explained by

its selection preference as shown in the left part of

Fig. 4 . The red curve is the true Pareto front. The gray

area is the replacement region of the new solution for

each subproblem. Point z is a transient ideal point,

which is iteratively updated during the evolutionary

process. It is apparent that a solution closer to z is

preferred. This limits the spread of the population to

the boundary of PF. Furthermore, if the weight vec-

tors of subproblems λ1 and λN are set to (0,1) and

(1,0), then subproblem λ1 aims to minimize the or-

dinate value, while subproblem λN aims to minimize

the abscissa value. This will cause the solution of sub-

problem λ1 to be closer to that of subproblem λN−1 ,

and the solution of subproblem λN to be closer to that

of subproblem λ2 . The neighbor structure is destruc-

ted in a sense. 

(2) The population does not distribute evenly along a

convex PF. When the PF is convex as shown in Fig. 4 ,

the evenly distributed weight vectors will not gener-

ate evenly distributed solutions along the Pareto front

due to the peaking and tailing at the two sides of the

PF. This problem has also been reported in the litera-

ture ( Cai et al., 2018 ). 

Prior knowledge is that the true PF of our model is convex.

For better performance, an inverted form of Tchebycheff pro-

posed in Jiang and Yang (2017) is utilized. In this paper, we

term it as nadir-based Tchebycheff (NTE). Unlike the ideal-

based Tchebycheff, NTE takes the nadir point as the refer-

ence point and the optimization objective of each subprob-

lem becomes far away from this worst case. The i th sub-

problem is as follows: 

max g nte (F | λ, z nad ) = min 

1 ≤i ≤m 

{ λi (z nad 
i − F i ) } , (28)

where F is the objective function vector of a solution. Its se-

lection region is shown in the right part of Fig. 4 . To avoid

abnormal selection, the weight vectors of λ1 and λN are set

to ( ε, 1- ε) and (1- ε, ε), where ε is a very small number. In-

stead of trending to one point, NTE guides the population

to all directions, resulting in a better sparsity. Moreover, the

solutions are distributed more evenly for convex PF. To avoid

the influence of different dimensions, we normalize the ob-

jective value. 

˜ F i = 

z nad 
i 

− F i 

z nad 
i 

− z i 
, i = 1 , . . . , m, (29)

where F i is the i th objective value, z i is the i th element of

the ideal point z, z nad 
i 

is the i th element of the nadir point

z nad , and 

˜ F i is the normalized i th objective value. Thus, the

optimization goal becomes 

max g nte ( ̃  F | λ, 0) . (30)

(2) Neighbor matching strategy 

As an important feature of MOEA/D, the neighbor structure

plays a vitally important role in the evolution process. An as-

sumption in MOEA/D is that the solutions of neighbor sub-

problems are similar to each other. A further consideration
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Fig. 4. Selection preference of two approaches. 
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is that the closer the two subproblems are, the more similar

their solutions are. Based on this idea, a neighbor match-

ing strategy (NMS) is proposed here. In the original version

of MOEA/D, a subproblem and its neighbor have the same

equivalence when mating them to generate a new solution.

In the proposed NMS, we focus on improving the subprob-

lem itself, and the improvement of its neighbors can be

thought of as a carried interest. The relationship between

subproblem i and subproblem j is defined as 

R i j = exp(−ρ|| λi − λ j || 2 ) , (31)

where λi and λj are the weight vectors of subproblems i

and j , respectively. ρ is a parameter used to determine the

strength of the relationship. When optimizing subproblem

i , the relative relationship between other subproblems and

subproblem i can be defined as 

r i j = 

R i j ∑ 

j R i j 

, j = 1 , . . . , N. (32)

The relative relationship provides the key parameter of NMS.

Fig. 5 shows the relative relationship between subproblem 1

and other subproblems with respect to different ρ . With an

increase in ρ , the relative relationship between subproblem

closer and subproblem i increases, while the farther sub-

problem decreases. 

Two different subproblems are chosen and crossed accord-

ing to the relative relationship. The details are given in

Algorithm 5 and Algorithm 6 . The subproblem with a bigger

value of the relative relationship is considered more promis-

ing for generating high-quality offspring for the current sub-

problem. It has the superiority of being selected and takes

up a larger proportion in the generated solution after the

crossover. Besides, in order to ensure diversity, initially, ρ is

set to a small value ρmin . The relative relationship is not sig-

nificantly different among subproblems at this time. As the

evolution proceeds, ρ is increased to enhance the conver-

gence. After the generation, R ij is updated by 

R i j = R i j Inc i j , (33)

Inc i j = exp 

(
−ρmax − ρmin 

G 

|| λi − λ j || 2 
)
, (34) 

where Inc ij is a constant incremental factor. It is calculated

using Eq. (34) . ρmax and ρ are the maximum and mini-
min 
mum values of ρ , respectively, and G is the maximum gen-

eration of the evolutionary algorithms. 

lgorithm 5 Select parents. 

nput: { R i j } , j = 1 , . . . , N. 

utput: p 1 , p 2 . 

1: r j = R i j , for j = 1 , . . . , N. 

2: for m = 1:2 do 

3: r j = 

r j ∑ 

j r j 
, for j = 1 , . . . , N. 

4: Choose one subproblem p m 

∈ { 1 , . . . , N} based on the prob-

ability distribution { r j } . 
5: Set r p m = 0 . 

6: end for 

lgorithm 6 Genetic operator. 

nput: I p 1 , I p 2 , R ip 1 , R ip 2 . 

utput: Offspring o. 

1: p c = 

R ip 1 
R ip 1 

+ R ip 2 
. 

2: for each genetic locus l do 

3: if rand < p c then 

4: o(l) = I l p 1 . 

5: else 

6: o(l) = I l p 2 . 

7: end if 

8: end for 

9: Perform mutation on offspring o. 

.4. Repairing technique 

Since the constraint sets (6)–(9) are always satisfied using the

roposed solution representation, here we focus on handling the

mmunition constraints and the continuous guidance constraints.

or the ammunition constraints, if the consumption of a WP ex-

eeds its remaining ammunition, we randomly eliminate some as-

igned targets and set the corresponding locus to 0 until the con-

traint is satisfied. For the continuous guidance constraints, we use

 mask-based technique and aim to find all the valid loci in an in-

ividuals. A invalid locus is defined as a locus where the assigned

arget can’t be engaged if this locus corresponding to a WP or has

o weapon guiding to it at that stage if this locus corresponding to
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Fig. 5. Relative relationship with respect to different ρ . 

Table 2 

f sik , p ik ( s ) and N sik related to WP and f sjk and q jk ( s ) related to SP of 

illustrative example. 

WP SP 

k = 1 k = 2 k = 1 k = 2 

s = 1 1, 0.5813, 2 1, 0.3738, 1 0, 0.4254 1, 0.5490 

s = 2 1, 0.5223, 1 1, 0.3848, 1 1, 0.3665 1, 0.6952 
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a SP. For example, if T 1 is assigned to WP 1 at stage 1, and no SP is

assigned to this target at this stage, then this assignment is invalid.

We find all these valid loci and evaluate the fitness of them. 

4.5. Illustrative example 

For a better understanding of the procedure of our proposed

algorithm, we present a typical numerical example in this subsec-

tion. Assume that a WP and a SP have 2 stages to defense 2 targets

in a combat scenario. The threat values of 2 targets are 98.45 and

46.20. The costs of WP and SP are 37.36 and 15.06 respectively. WP

has enough ammunition resources. Robust parameters are set to 0.

Other parameters are given in Table 2 . 

To the first beginning, we build the coding tables WS and QS.

As we can see in Fig. 6 , although T 1 can be engaged by WP at

first stage, it is not included in WS 11 since it require 2 stages of

continuous guidance however there are no SP can finish this task

at first stage. 

Heuristic initialization is followed in the next phase. We find

all the valid quaternions and put them into AQS. Initially, there are

three valid ones, which are (1,1,1,2), (2,1,1,1) and (2,1,1,2). We eval-

uate the ECR of each quaternion as show in figure and then the

quaternion (2,1,1,1) with the maximum ECR is selected as the can-

didate to add into the scheme. it’s clear that the empty solution

would change to [0, 1, 0, 1] by referring the solution representa-
ion. At this time, the quaternion (2,1,1,2) would become infeasi-

le since both WP and SP are assigned to T 1 at stage 2 and they

an not be assigned to T 2 further at this stage. In the next step,

he quaternion (1,1,1,2) is added into the scheme. There are three

euristic individuals at this time and it exceeds our limit if we set

 = 2 , the crowding-distance-based deleting is employed and the

econd individual with the minimum CD will be deleted. Finally,

ince the size of population is P = 4 , we randomly insert other 2

ndividuals that are randomly generated into the population to fin-

sh the construction of the initial population. 

At the evolutionary process, for each subproblem i , we se-

ect two different individuals according the probability distribution

p j = r i j . In our example, we assume that I 1 and I 3 are selected.

hen we perform the crossover operator with the probability P 1 
f selecting locus from I 1 . Then the mutation operator changes the

hird locus to 1. The newly generated solution is used to update

he neighbors of subproblem i using the nadir-based Tchebycheff.

his process continued until the stopping criteria satisfied. 

. Experiment and result analysis 

.1. Comparison algorithm 

To prove the effectiveness of the modified MOEA/D with heuris-

ic initialization, we take another famous multi-objective optimiza-

ion framework, NSGA-II ( Deb et al., 20 0 0 ), as the main com-

arison algorithm. Following six algorithms are designed to com-

are: NSGA-II with and without heuristic initialization (NSGA-II-

euristic and NSGA-II), MOEA/D with and without heuristic initial-

zation (MOEA/D-Heuristic and MOEA/D), and modified MOEA/D

ith and without heuristic initialization (MMOEA/D-Heuristic and

MOEA/D). Uniform crossover and random mutation operators

re applied to the algorithms without the proposed modifications.

andom initialization is used for those without heuristic. 
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Fig. 6. An example to illustrate the procedure of the proposed algorithm. 
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.2. Performance metrics 

Several popular metrics are introduced to compare the perfor-

ance of the different algorithms. 

Inverted generational distance (IGD) ( Ishibuchi, Masuda, Tani-

aki, & Nojima, 2015 ): This is a metric that can measure both di-

ersity and convergence. It represents the average distance of the

iven set of non-dominated solutions to the true Pareto front. The

ormulation is as follows: 

GD (A, P ∗) = 

∑ 

v ∈ P ∗ d(v , A ) 

| P ∗| , (35)

here P ∗ is the true Pareto front, d ( v, A ) is the minimum distance

etween v and the points in A . It is hard to obtain the true Pareto

ront. In this paper, the true Pareto front is set as the set of non-

ominated solutions among all solutions obtained by different al-

orithms. 

Generational distance (GD) ( Ishibuchi et al., 2015 ): Unlike the

GD metric, the GD metric measures the average distance from an

nverted perspective. This metric puts more emphasis on conver-

ence. Its formulation is as follows: 

D (A, P ∗) = 

∑ 

v ∈ A ˜ d (v , P ∗) 
| A | , (36)

here ˜ d (v , P ∗) is the minimum distance between v and the points

n P ∗. 

Diversification metric (DM) ( Afzalirad & Rezaeian, 2017 ): This

etric measures the spread of non-dominated solutions on the

areto front. It is calculated as follows: 

M = 

√ 

( max f 1 i − min f 1 i ) 2 + ( max f 2 i − min f 2 i ) 2 , (37) 

here f 1 i and f 2 i are the first and second objective values of i th

olution, respectively. 

.3. Case generator 

Since it is difficult to obtain real battlefield data, we develop

 test case generator to generate several instances with differ-
nt scales to compare the performance of different algorithms

 Xin et al., 2010 ). Given the parameters S, W, Q , and T , the other

arameters are generated as follows. 

(1) { v k } 

v k = 10 + 90 · rand. (38)

The threat value of the k th target is randomly generated in

the interval of [10,100]. 

(2) { p ik ( s )}, { q jk ( s )} 

p ik (s ) = P L + rand · (P H − P L ) , (39)

q ik (s ) = Q L + rand · (Q H − Q L ) , (40)

where P H and P L are the upper and lower bounds of the

destroying probability of WP, respectively. Q H and Q L are

the upper and lower bounds of the tracking performance of

SP, respectively. rand generates a uniform random number

within the range of [0,1]. p ik ( s ), q jk ( s ) are randomly gener-

ated in these two ranges. In the following, P H and Q H are set

to 0.7, while P L and Q L are set to 0.3. 

(3) { c i }, { d j } 

Similar to 2), c i and d j are randomly generated in the inter-

vals [10,50] and [5,30], respectively. 

(4) { f sik }, { f sjk } 

f sik = (sgn (rand − f r1 ) + 1) / 2 , (41)

f s jk = (sgn (rand − f r2 + 1) / 2 , (42)

where sgn ( · ) is equal to 1 if its argument is positive, and -1

otherwise, while f r 1 and f r 2 denote the probability that the

parameter is equal to 0. We set them to 0.5. 

(5) { F i } 

F i = 
 (F max + 1) · rand� . (43)

This will randomly generate an integer ranging from 0 to

F max . In our implementation, F max is set to 4. 
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Fig. 7. (a)-(f): Taguchi ratios for all algorithms. 
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(6) { N sik } 

Similar to 5), N sik is set to a randomly generated integer

ranging from 1 to N max . In our experiment, N max = 2 . 

(7) { γ iks }, { γ jks } 

Similar to 2), the uncertain parameters of the combat platforms

are randomly generated in the interval [0.1,0.5]. 

In the computational experiment, several instances with differ-

ent scales are randomly generated using the case generator. In or-

der to illustrate the necessity of a robust model, the robust reg-

ulator parameter σ is set to three different levels: L1: σ = 0 , L2:

σ = 0 . 5 , and L3: σ = 1 . Thus, 12 different instances are given in
able 3 , where S, W, Q, T represent the number of stages, WPs, SPs,

argets respectively. The instances under the same scenario share

he same parameters except for different robust level. This is for

he comparison of robust model in following subsection. 

.4. Parameter tuning 

As discussed earlier, in order to calibrate the parameters,

aguchi method is applied. It uses orthogonal arrays to study a

roup of factors. Factors that influence the performance are cat-

gorized into two groups: 1) controllable or signal factors and

) noise factors. The Taguchi method seeks to find the optimal
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ombination of signal factor levels that minimizes the effects of

oise factors in the response. It is a robust process design for noise

actors. The concept of signal to noise ratio(S/N) is introduced as

he goal of calibration. In this paper, the smaller-the-better type of

esponse is adopted. The S/N is given as follows: 

/N = −10 × log 

(
S(Y 2 ) 

n 

)
, (44) 

here Y and n are the response and the number of orthogo-

al arrays respectively. S ( Y 2 ) is the summation of responses un-

er one combination of signal factors. In this paper, a new metric

alled combinatorial ratio (C.R.) is introduced as the response of
he Taguchi method. It is given by Eq. (45) . GD and DM are metrics

iscussed in the previous subsection. It is clear that a smaller value

f C.R. is better. This metric requires that the final non-dominated

olutions converge closely to the true Pareto front and can approx-

mate the whole Pareto front. 

.R. = 

GD 

DM 

. (45) 

For a fair comparison, the size of the population (PS) and the

umber of generations (NOG) are set the same for different al-

orithms as shown in Table 4 . The other parameters to be cali-

rated are given in Table 5 , where CR stands for cross rate, MR

tands for mutation rate, TS stands for tournament size, U/P stands
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for the ratio of the size of heuristic individuals to the size of the

population. The ranges of these parameters are choosing via trials

and errors to a less sensitive sections around the optimal values

for ease of tuning. In the range of each parameter, its value is di-

vided into three levels: Low, Medium, and High. Instances 1, 4, 7,

and 10 with different scales are chosen as representatives to per-

form the Taguchi tests. The tuned parameters are expected to be

feasible in all instances. For algorithms with 3–4 parameters, the

L9 design is employed. The effect plots of S/N ratios are presented

in Fig. 7 . The parameter level with the maximum mean of S/N is

chosen as the optimal level. The calibration result is highlighted in

Table 5 . 
.5. Result analysis 

In this subsection, we perform numerical experiments to com-

are the 6 different algorithms on 12 different instances and ana-

yze the results. The parameters are set the same as the calibration

esult in the previous subsection. Independent runs are performed

n each instance 30 times for all algorithms. The program is imple-

ented using MATLAB software and run on a laptop with 2.6 GHz

ore i5 CPU and 4.00 GB RAM. The statistical results for the met-

ics IGD, GD, and DM are presented in Tables 6–8 , respectively. For

ach instance, we give the rank of the mean value with respect

o each metric. The Wilixon’s rank sum test at a 5% significance
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. (a)–(l): PF of a single run with minimum IGD value on 12 instances. 
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level is conducted to test the significance of the differences be-

tween the mean metric values yielded by MMOEA/D-Heuristic and

the other comparison algorithms. The symbols † , §, and ≈ indicate

that the performance of MMOEA/D-Heuristic is better than, worse

than, and similar to that of the comparison algorithm according
o Wilixon’s rank sum test, respectively. The bold data in the ta-

le are the best mean metric values for each instance. The data in

arentheses are the standard deviations. Table 9 summarizes the

verall performance of the mean rank and the statistical result ob-

ained via the Wilixon’s rank sum test. Fig. 8 shows the PFs of a
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a)–(l): The convergence curves of IGD with respect to time on 12 instances. 
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Table 3 

The setting of test instances. 

Instance Robust Level Scenario 

No. 1 L1 (Sce 1)S5W4Q4T10 

No. 2 L2 

No. 3 L3 

No. 4 L1 (Sce 2)S8W10Q15T20 

No. 5 L2 

No. 6 L3 

No. 7 L1 (Sce 3)S12W25Q20T30 

No. 8 L2 

No. 9 L3 

No. 10 L1 (Sce 4)S15W30Q30T40 

No. 11 L2 

No. 12 L3 

Table 4 

Basic parameter setting. 

Instances 1,2,3 4,5,6 7,8,9 10,11,12 

PS 100 100 100 100 

NOG 100 200 300 400 

s  

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ingle run with minimum IGD value for different algorithms on 12

nstances. 

(1) The effectiveness of modifications and heuristic initialization

As shown by the statistical results, the modifications of

MOEA/D performs relatively poor in the small-scale in-

stances 1, 2, and 3. The main reason is that in the small

case, the solutions of different subproblems do not have sig-

nificant differences. Therefore, the newly generated solution

does not obtain sufficient variance using the neighbor struc-

ture and can easily be trapped into the local optimal. NSGA-

II using the n-tournament selection and randomly match-

ing has more advantages in the small-scale case. As the

scale of the problem increases, the superiority of MMOEA/D

becomes apparent. On the one hand, compared to NSGA-

II and MOEA/D, MMOEA/D shows the best performance in

terms of the DM metric. The nadir-based Tchbycheff ap-

proach gives a better approximation of the whole Pareto

front than the ideal-based. On the other hand, the conver-
Table 5 

Algorithm parameter ranges along with their levels. 

Multi-objective algorithms Algorithm parameters Pa

NSGA-II CR(A) 0.6

MR(B) 0.0

TS(C) 1–

MOEA/D CR(A) 0.6

MR(B) 0.0

T(C) 5–

MMOEA/D MR(A) 0.0

ρmin (B) 25

ρmax (C) 10

NSGA-II-Heuristic CR(A) 0.6

MR(B) 0.0

TS(C) 1–

U/P(D) 0.1

MOEA/D-Heuristic CR(A) 0.6

MR(B) 0.0

T(C) 5–

U/P(D) 0.1

MMOEA/D-Heuristic MR(A) 0.0

ρmin (B) 25

ρmax (C) 10

U/P(D) 0.1
gence of MMOEA/D is enhanced with the help of NMS. It

should be noted that there is a contradiction between the

DM and GD metrics. The smaller the DM metric is, the bet-

ter the GD metric will be since the computation is empha-

sized on a smaller region. To illustrate the effectiveness of

NMS considering this contradiction, I gd and I dm are given as

follows to compare MOEA/D and MMOEA/D: 

I gd = 

GD m 

− GD 

GD 

(46) 

I dm = 

DM m 

− DM 

DM 

(47) 

where GD and DM are the mean GD and DM values of

MOEA/D on one instance, respectively. GD m 

and DM m 

are

the mean GD and DM values of MMOEA/D on the same

instance, respectively. I gd and I dm measure the relative in-

crease in the GD and DM metrics caused by the modified

part of MOEA/D. These two values on 12 instances are given

in Table 10 . It is clear that I dm is bigger than the I gd met-

ric for most instances. A better approximation of the whole

Pareto front with a relatively lower decrease in the perfor-

mance of the GD metric illustrates the effectiveness of NMS,

especially in large scale cases. Since IGD is a comprehensive

metric, it also illustrates the superiority of MMOEA/D com-

pared to NSGA-II and MOEA/D. 

After the heuristic initialization is incorporated into the al-

gorithms, NSGA-II-Heuristic achieves a better performance

than MOEA/D-Heuristic. However, we can still see that

MMOEA/D-Heuristic performs better on IGD and DM metrics

and remain almost even on the GD compared with NSGA-

II-Heuristic. A comparison between MOEA/D-Heuristic and 

MMOEA/D-Heuristic shows that the modified strategy can

greatly improve the performance of MOEA/D under heuris-

tic initialization. 

As for the initialization strategy based on efficiency-cost ra-

tio, from all the compared metrics, its necessity is apparent.

All the algorithms with heuristic initialization are superior

to those without it. 

The mean rank presented in Table 9 shows that MMOEA/D-

Heuristic ranks first among all, and MMOEA/D ranks first

among the three algorithms without heuristic initialization.
rameter range Low(1) Medium(2) Large(3) 

–0.8 0.6 0.7 0.8 

1–0.05 0.01 0.03 0.05 

3 1 2 3 

–1 0.6 0.8 1 

1–0.05 0.01 0.03 0.05 

15 5 10 15 

1–0.05 0.01 0.03 0.05 

–75 25 50 75 

0 200 100 150 200 

–0.8 0.6 0.7 0.8 

1–0.05 0.01 0.03 0.05 

3 1 2 3 

–0.4 0.1 0.25 0.4 

–1 0.6 0.8 1 

1–0.05 0.01 0.03 0.05 

15 5 10 15 

–0.4 0.1 0.25 0.4 

1–0.05 0.01 0.03 0.05 

–75 25 50 75 

0–200 100 150 200 

–0.4 0.1 0.25 0.4 
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Table 6 

Comparison of IGD. 

NSGA-II MOEA/D MMOEA/D NSGA-II-Heuristic MOEA/D-Heuristic MMOEA/D-Heuristic 

No. 1 8.1897 § [3](4.0216) 11.2333 ≈ [5](4.6026) 13.5177 † [6](4.3067) 4.7752 § [1]( 1.4657 ) 6.1208 § [2](1.212) 10.8284[4](3.3159) 

No. 2 6.7144 § [3](4.0643) 11.8985 § [4](6.722) 15.3401 ≈ [6](7.4336) 3.5721 § [1]( 0.79585 ) 5.0046 § [2](1.5217) 15.165[5](5.7316) 

No. 3 7.0085 § [3](3.5371) 11.3758 ≈ [5](5.6998) 15.4622 † [6](8.1054) 2.1865 § [1]( 1.2767 ) 2.7318 § [2](1.126) 11.0289[4](4.0486) 

No. 4 46.4218 † [5](6.6109) 48.9877 † [6](10.5628) 33.4408 † [3](8.6916) 21.896 † [2](3.6471) 33.4497 † [4](9.6625) 12.6786 [1]( 2.8647 ) 

No. 5 48.294 † [6](8.6999) 47.5322 † [5](9.7378) 26.5508 † [3](7.5571) 19.1953 † [2](5.4501) 37.4899 † [4](10.8499) 10.7277 [1]( 2.4062 ) 

No. 6 44.4059 † [5](7.8744) 54.5964 † [6](6.5979) 31.5698 † [4](7.6475) 12.1979 † [2](2.6255) 22.9316 † [3](6.8973) 7.9872 [1]( 1.657 ) 

No. 7 120.3177 † [5](11.1618) 129.3656 † [6](13.5988) 80.8877 † [4](9.6519) 49.0242 † [2](12.1271) 69.5727 † [3](16.4761) 21.0255 [1]( 4.8404 ) 

No. 8 114.0853 † [5](19.458) 142.8034 † [6](17.5629) 73.4541 † [4](9.3825) 47.0074 † [2](13.8484) 64.8361 † [3](20.8623) 17.884 [1]( 3.7479 ) 

No. 9 107.7719 † [5](9.819) 124.2339 † [6](13.89) 73.2567 † [4](8.0731) 20.9982 † [2](3.4971) 29.2277 † [3](7.5018) 14.0544 [1]( 2.4736 ) 

No. 10 249.5716 † [5](19.5241) 249.6157 † [6](20.0271) 189.936 † [4](10.5346) 119.402 † [2](21.0057) 136.2349 † [3](25.787) 46.1347 [1]( 5.0993 ) 

No. 11 229.5058 † [6](18.1755) 226.6189 † [5](14.328) 175.7186 † [4](9.6031) 56.7808 † [2](9.1682) 67.3445 † [3](10.2782) 31.2276 [1]( 4.9239 ) 

No. 12 231.9612 † [5](16.9235) 236.8257 † [6](20.0957) 179.6928 † [4](11.208) 43.266 † [2](7.5725) 51.0314 † [3](9.9346) 26.2692 [1]( 4.4915 ) 

† /§/ ≈ 9/3/0 9/1/2 11/0/1 9/3/0 9/3/0 

Table 7 

Comparison of GD. 

NSGA-II MOEA/D MMOEA/D NSGA-II-Heuristic MOEA/D-Heuristic MMOEA/D-Heuristic 

No. 1 3.3632 § [1]( 2.5105 ) 5.5596 ≈ [4](3.9349) 6.6961 ≈ [6](4.4706) 4.2172 § [2](2.1684) 5.3217 ≈ [3](1.7564) 6.1848[5](2.2348) 

No. 2 2.7484 † [4](2.3277) 6.1322 † [6](4.4711) 5.52 † [5](4.3112) 2.2833 † [3](0.23461) 1.628 ≈ [1]( 0.52999 ) 1.6886[2](0.76828) 

No. 3 1.8318 † [4](2.1392) 6.013 † [5](4.4143) 7.6568 † [6](4.4371) 0.82282 † [3](0.20685) 0.78735 † [2](0.29576) 0.63239 [1]( 0.8053 ) 

No. 4 41.3634 † [6](9.2589) 26.9482 † [4](7.8578) 35.21 † [5](8.7313) 16.5687 † [3](2.0239) 13.0505 ≈ [2](3.6877) 11.6893 [1]( 3.233 ) 

No. 5 33.9842 † [6](9.7405) 24.6953 † [4](9.2815) 26.4347 † [5](7.9665) 10.8574 † [2](2.6145) 11.4434 † [3](3.5005) 8.8855 [1]( 2.6259 ) 

No. 6 32.367 † [5](6.6827) 29.3642 † [4](7.3415) 32.4438 † [6](8.3488) 8.2414 † [3](1.6271) 7.9304 ≈ [2](3.6489) 6.3738 [1]( 2.3157 ) 

No. 7 98.6666 † [6](13.9295) 57.5787 † [4](13.327) 76.3171 † [5](9.3622) 18.9955 ≈ [2](4.1967) 15.795 § [1]( 7.8556 ) 20.0001[3](6.5517) 

No. 8 91.7119 † [6](11.2963) 54.1882 † [4](13.3446) 73.8322 † [5](10.0883) 18.0584 ≈ [3](4.1385) 15.9309 ≈ [1]( 5.667 ) 16.4357[2](5.4308) 

No. 9 90.8852 † [6](11.1888) 59.6647 † [4](9.347) 74.0202 † [5](9.1025) 12.0513 ≈ [1]( 2.903 ) 14.2417 ≈ [3](5.1848) 12.675[2](3.4597) 

No. 10 246.5104 † [6](20.0577) 170.0311 † [4](20.5599) 186.8477 † [5](11.9188) 33.2194 § [1]( 7.0312 ) 61.9192 † [3](26.7459) 42.956[2](6.9723) 

No. 11 251.8857 † [6](17.2594) 175.4591 † [4](21.9591) 199.5874 † [5](16.1971) 25.3147 § [1]( 4.5829 ) 54.7884 † [3](21.9265) 32.1558[2](7.6379) 

No. 12 231.6516 † [6](21.5368) 155.5378 † [4](23.273) 199.9317 † [5](15.5215) 19.9941 § [1]( 4.8203 ) 41.4174 † [3](14.3707) 24.9027[2](6.6515) 

† /§/ ≈ 11/1/0 11/0/1 11/0/1 5/4/3 5/1/6 

Table 8 

Comparison of DM. 

NSGA-II MOEA/D MMOEA/D NSGA-II-Heuristic MOEA/D-Heuristic MMOEA/D-Heuristic 

No. 1 389.592 § [3](37.4239) 382.4988 § [4](31.4648) 339.9919 † [6](32.6963) 444.2962 § [1]( 26.8517 ) 444.0833 § [2](17.7894) 355.5651[5](25.4693) 

No. 2 393.9062 § [4](35.7881) 394.1848 § [3](51.027) 325.5311 § [5](47.2558) 416.4242 § [1]( 16.683 ) 402.0545 § [2](23.5178) 298.6246[6](24.2296) 

No. 3 362.8592 § [4](36.1275) 372.8791 § [3](47.8951) 320.6564 § [5](50.9549) 404.9622 § [2](23.0615) 406.5821 § [1]( 29.8917 ) 296.8157[6](21.5294) 

No. 4 1234.3957 † [4](94.6385) 1102.084 † [6](83.906) 1388.0034 ≈ [2](67.1363) 1276.2175 † [3](77.2405) 1125.9806 † [5](77.0893) 1404.0331 [1]( 35.9819 ) 

No. 5 1133.7655 † [4](83.8843) 1091.6675 † [5](94.2224) 1369.0141 ≈ [2](68.4812) 1244.848 † [3](81.9575) 1070.6588 † [6](77.9422) 1386.5861 [1]( 36.5755 ) 

No. 6 1096.2139 † [4](96.2958) 978.2114 † [6](64.3693) 1324.4972 ≈ [2](59.7193) 1266.3439 † [3](83.2416) 1091.2242 † [5](77.3163) 1339.5139 [1]( 53.66 ) 

No. 7 2262.5516 † [4](175.2617) 1909.5924 † [6](128.9347) 2632.2703 † [2](88.169) 2358.4352 † [3](176.5866) 2115.5118 † [5](188.474) 3159.4834 [1]( 59.6493 ) 

No. 8 2280.2155 † [4](216.7015) 1852.4035 † [6](120.2123) 2622.4711 † [2](109.0001) 2388.7434 † [3](176.5225) 2196.2312 † [5](189.9181) 2977.7155 [1]( 66.7503 ) 

No. 9 2140.5727 † [5](183.1792) 1774.7104 † [6](112.8489) 2530.3564 † [2](101.3092) 2524.9726 † [3](128.6506) 2369.4886 † [4](175.1347) 2893.9271 [1]( 63.786 ) 

No. 10 3304.0783 † [3](252.5444) 2760.8892 † [6](194.6916) 3659.7427 † [2](106.9569) 3072.4658 † [5](202.6642) 3092.973 † [4](295.756) 4649.8304 [1]( 152.8444 ) 

No. 11 3296.9752 † [5](219.7755) 2775.6826 † [6](207.296) 3623.2878 † [3](106.0351) 3557.3529 † [4](207.8268) 3772.5925 † [2](371.8444) 4624.7691 [1]( 170.2016 ) 

No. 12 3074.7199 † [5](253.0552) 2522.5279 † [6](203.9411) 3606.5167 † [3](129.1448) 3535.2622 † [4](224.7087) 3666.3555 † [2](306.3085) 4420.9737 [1]( 188.863 ) 

† /§/ ≈ 9/3/0 9/3/0 7/2/3 9/3/0 9/3/0 

Table 9 

Overall performance of four algorithms on the 12 in- 

stances in terms of IGD, GD, and DM metrics. 

Mean Rank Total † /§/ ≈
NSGA-II 4.6389 29/7/0 

MOEA/D 5 29/4/3 

MMOEA/D 4.1944 29/2/5 

NSGA-II-Heuristic 2.25 23/10/3 

MOEA/D-Heuristic 2.9167 23/7/6 

MMOEA/D-Heuristic 2 –

 

 

 

 

Table 10 

Comparison of MOEA/D and MMOEA/D on I gd and I dm . 

Instance I gd I dm 

1 0.2044 –0.1111 

2 –0.0998 –0.1742 

3 0.2734 –0.1742 

4 0.3066 0.2594 

5 0.0704 0.2541 

6 0.1049 0.3540 

7 0.3254 0.3784 

8 0.3625 0.4157 

9 0.2406 0.4258 

10 0.0989 0.3256 

11 0.1375 0.3054 

12 0.2854 0.4297 

 

 

In addition, the total count of † /§/ ≈ shows that MMOEA/D-

Heuristic outperforms all other algorithms. Fig. 8 gives an in-

tuitive vision to the obtained Pareto fronts by all algorithms

on 12 instances. This also confirms that our proposed strat-

egy is effective in solving the model. 

(2) The convergence curve with respect to time 
In this part, we analysis the convergence curve of IGD with

respect to time on 12 instances, as shown in Fig. 9 . We
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. (a)-(h): The performance under nominal and worst conditions for different robust levels. (a) Sce 1 nominal; (b) Sce 1 worst; (c) Sce 2 nominal; (d) Sce 2 worst; (e) 

Sce 3 nominal; (f) Sce 3 worst; (g) Sce 4 nominal; (h) Sce4 worst. 
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Table 11 

Time consuming of random and heuristic initialization. 

Instance 1 4 7 10 

Random/s 0.0002 0.0003 0.0006 0.0010 

Heuristic/s 0.0022 0.1562 1.6255 7.4255 
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sample the population each 20 generations, and record the

IGD value of the non-dominated solutions in population and

the corresponding time starting from the beginning of the

algorithm. 30 independent runs are carried, and the average

time versus the average IGD curves are as plotted. 

As we stated earlier, the performance of decomposition-

based algorithm are worse than NSGA-II in the small scale

instances 1, 2 and 3. MMOEA/D and MMOEA/D-Heuristic

have relatively poor performance than others in these in-

stances. In other instances, the ranking of these curves from

the bottom up is MMOEA/D-Heuristic, NSGA-II-Heuristic,

MOEA/D-Heuristic, MMOEA/D, MOEA/D and NSGA-II. It’s ap-

parent that the modifications have enhanced the searching

efficiency under the limit of time. 

We further consider the time consuming of initialization.

The heuristic initialization can give a better hybrid popu-

lation at the cost of more time consuming. The time con-

suming of several instances is shown in Table 11 and they

are also reflected in Fig. 9 . Although it costs more time to

do initialization, we can start from a better initial state, and

Fig. 9 shows that this is much more efficient than evolv-

ing the population from a randomly initialized state. Besides,

there is an interesting phenomenon that the algorithms with

heuristic initialization cost less time evolving the same num-

ber of generations than those without it. This might be ex-

plained as that they need less repairing or replacing oper-

ations. In a whole, the heuristic initialization seems to be a

very efficient way in our optimization problem. In fact, there

are many tricks can be further utilized to accelerate the ini-

tialization process. For example, the calculation of ECR and

the deleting of infeasible quaternions can be processed in

parallel, or we can select one among several quaternions in

AQS instead of selecting from the whole AQS. The time con-

suming is thus acceptable in our real dynamic problem. 

(3) The necessity of robust model 

To illustrate the necessity of the proposed robust model un-

der uncertainty, we compare the non-dominated solutions of

the same scales with different robust levels. There are four

scenarios in our test instances as shown in Table 3 . We study

two different conditions for each scenario to test the perfor-

mance of the robust model with different robust levels. They

are the nominal and the worst conditions. Under the nom-

inal condition, the uncertain parameters p ik ( s, ξ ) and q jk ( s,

ξ ) take the nominal values p ik ( s ) and q jk ( s ), similar to the

deterministic model. Under the worst conditions, the uncer-

tain parameters take the worst values (1 − γiks ) p ik (s ) and

(1 − γ jks ) q jk (s ) , respectively. The non-dominated solutions

in the true Pareto front displayed in Fig. 8 are evaluated un-

der these two conditions, and the cost-efficiency curve for

each robust level in each scenario is plotted in Fig. 10 . 

From Fig. 10 , it can be seen that under Sce 1, the perfor-

mance of different robust levels under the nominal and the

worst conditions do not have significant differences. How-

ever, with the increase in the scales, the advantage of the

robust model becomes apparent. It is clear that under the

worst condition of Sce 2, 3, and 4, the robust model has

better efficiency than the deterministic model while keep-

ing the costs the same. That is, under the worst condi-
tion, the assignment scheme obtained by the robust model

achieves a greater threat elimination when consuming the

same amount of combat resources as that obtained by the

deterministic model. It is also seen that under the nomi-

nal condition, the cost-efficiency curves of the three robust

levels almost overlap with each other. Thus, we can con-

clude that the robust model can effectively improve the per-

formance under the worst condition while keeping almost

the same performance as the deterministic model under the

nominal condition. 

. Conclusion and future work 

In this paper, we focus on modeling the dynamic collabora-

ive task assignment. A bi-objective dynamic assignment model

s established. To solve the model efficiently, a modified MOEA/D

ith heuristic initialization is proposed. The solution representa-

ion is designed. A novel constructive heuristic initialization based

n efficiency-cost ratio is proposed to generate an initial hybrid

opulation. The nadir-based Tchebycheff approach is employed to

btain a better approximation to the whole Pareto front. A neigh-

or matching strategy with an adaptive adjustment mechanism is

roposed for better utilization of the neighbor information. Finally,

e apply the Taguchi method to tune the parameters, and numer-

cal experiments are carried out. 

Dynamic, uncertain, flexible and cooperative natures in real bat-

lefield are the main bottlenecks to achieve the automation of task

ssignment. According to the current research status in this field,

hese aspects has not been satisfied solved. This paper addresses

hese problems. Firstly, we specify the multi-stage dynamic adjust-

ent mechanism which has not been clearly pointed out by oth-

rs. Secondly, we first model the cooperative behavior of SP and

P in a multi stage assignment process. Thirdly, the Soyster ro-

ust model is introduced to replace those scenario-based model for

eal time purpose. The model is an extension of the classical WTA

roblem and its NP-hardness has also been proved. In algorithm

spect, the multi-objective heuristic has not been widely studied

urrently. We present a novel and efficient heuristic framework

ased on the concept of ECR for multi-objective problems and im-

rove MOEA/D with several modifications. 

Some works need to be further studied in the future. We

ay less attention to the uncertainty from the situational decision

ayer in this paper. This involves the uncertainty of the time win-

ow, which increases the complexity of this problem. It should be

tudied in future works. And the proposed heuristic initialization

s very effective. Local selection of quaternions or parallel com-

uting maybe studied to further decrease the time consumption.

ince NMS can enhance the convergence, we could design feed-

ack mechanisms to obtain better performance. 
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ppendix A. Proof of Theorem 1 

roof. To prove it, We first convert our model into a single-

bjective formulation by limiting the maximum total costs using

he ε-constraint method ( Miettinen, 2012 ): 

ax F 
′′ 

1 (t) , 

s . t . F 2 (t) < C, (6) , (7) , (8) , (9) , (10) , (11) . (A.1) 

By setting Q 

′′ 
k 
(s ) = 1 , d j = 0 , and N sik = 0 for all s, i, j, k , Prob-

em (A.1) is reduced to the general WTA, which is a well-known

P-hard problem ( Lloyd & Witsenhausen, 1986 ). Hence, WTA is a

pecial case of Problem (A.1) . When Problem (A.1) is solved, WTA

s also solved, which illustrates that Problem (A.1) is also NP-hard. 

With this prior knowledge, the proof is clear. If the bi-objective

roblem is not NP-hard, we can obtain a solution of each ε-

onstraint version in polynomial time, which contradicts with the

bservation that Problem (A.1) is NP-hard. Thus, the NP-hardness

s proved. �
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