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Abstract—Transport processes are universal in real-world
complex networks, such as communication and transportation
networks. As the increase of transport demands in these complex
networks, the problems of traffic congestion and transport delay
become more and more serious, which call for a systematic
network transport optimization. However, it is pretty challenging
to improve transport capacity and efficiency simultaneously, since
they are often contradictory in that improving one degenerates
the other. In this paper, we formulate a multi-objective optimiza-
tion problem including two objectives: maximizing the transport
capacity and minimizing the average number of hops. In this
problem, we explore the optimal edge weight assignments and
the associated routing paths, corresponding to the optimal trade-
off between the two objectives. To solve this problem, we pro-
vide a multi-objective evolutionary algorithm, namely network
centrality guided multi-objective particle swarm optimization
(NC-MOPSO). Specifically, within the framework of MOPSO,
we propose a hybrid population initialization mechanism and
a local search strategy by employing the network centrality
theory to enhance the quality of initial solutions and strengthen
the exploration of the search space, respectively. Simulation
experiments performed on network models and real networks
show that our algorithm has better performance than five state-
of-the-art alternatives on several most-used metrics.

Index Terms—Complex networks, network dynamics, network
optimization and control.

I. INTRODUCTION

IN modern society, human life relies so much on various in-
frastructure networks, including transport, communication

and power networks, to deliver either tangible quantities, such
as goods and travelers, or intangible quantities, like informa-
tion and electricity. The performance of transport processes on
these infrastructure networks significantly affects the quality
of our lives. Meanwhile, the traffic load on these networks
increases exponentially owing to the rapid development of
our society. For example, the latest Cisco traffic report [1]
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revealed that Internet traffic is experiencing an explosion with
the growing number of applications. The increasing traffic
poses a great challenge to the efficiency and scalability of
these networks, and thus calls for systematic optimization to
address these issues.

The performance of network transport can be measured
from different aspects. On the one hand, we care about the
maximum amount of traffic a network can transport per unit
time, which is usually called network capacity [2]. Many
factors affect the network capacity. For instance, generally
the larger processing capability of nodes and links, the larger
network capacity will be achieved [3]; homogeneous networks
have larger transport capacity than heterogeneous ones [4];
the more diverse delivery paths, the larger network capacity
[5]. On the other hand, the quantities transported through
networks are always expected to reach their destinations as fast
as possible, hence the average number of hops is also a critical
metric in network transport [6]. This metric is also affected
by the network structure, node capability, routing paths, etc.
Therefore, we can optimize network transport performance by
considering these factors.

Optimizing the “hard” factors such as network structure
and node capability usually results in a large cost and is
even impossible in many cases. A more feasible way is to
optimize the routing paths in the network transport, which
determine how quantities are transported from their sources
to destinations. The routing paths are often selected to be
the paths with the smallest sum of edge weight, named as
the smallest-weight path (SWP) strategy, which offers the
opportunity to tune the edge weight for routing optimization.

A. Our Motivation

For a network, we can give a form of edge weight based
on the properties of the network. For example, the weight of
an edge in computer networks can be defined according to
its actual bandwidth [7]. In air traffic networks, the weight
of an edge can be quantified by the number of passengers on
the flights passing through it. Though we have the freedom to
set edge weight, it is hard for us to provide the optimal edge
weight assignment and the associated routing paths, leading
to the optimal network transport performance.

Furthermore, when multiple transport performance metrics
are under consideration, which is usually the case in practice,
it becomes much harder to assign the edge weight, since these
metrics may collide with each other and then a reasonable
balance is needed. For instance, when the weight values of
all edges are set to be equal, the SWP strategy is reduced
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to the shortest path (SP) strategy. Under the SP strategy, the
traffic will be delivered with the least average number of hops.
However, also under the SP strategy, highly connected nodes
(hubs) are prone to become congested because they are usually
the intersections of many routing paths, and the congestion
will also spread to other nodes [8]. This cascading congestion
problem significantly suppresses network capacity. To increase
network capacity, the edge weight should be properly assigned
that the routing paths bypass the hub nodes, which inevitably
increases the average number of hops.

Our motivation is then to find a set of edge weight as-
signments and the associated routing paths leading to the
optimal balance between the average number of hops and
network capacity. It is however very challenging to achieve
this optimal balance, since optimizing one objective, such
as network capacity, is already NP-hard [9], [10]. There-
fore, multi-objective evolutionary algorithms (MOEAs) are
applicable to our problem, which can produce a bunch of
nondominated solutions corresponding to the optimal trade-
off among contradictory objectives.

A number of popular MOEAs have been developed in the
field of evolutionary computation to deal with multi-objective
optimization problems in the real world, such as the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [11] and
multi-objective particle swarm optimization (MOPSO) [12].
The advantage of MOPSO mainly lies in that it requires
very few assumptions or mathematical conditions about the
optimization problem. It has however two main flaws. One
is the early convergence to a local optimum, and the other
is the loss of particle diversity during iterations. To counter
these flaws of MOPSO, we can refer to the theories from
the field of network science. Particularly, network centrality
[13] has been found to have a great influence on both the
structures and functions of complex networks. It also has the
potential to be applied to enhance MOPSO, especially for
network-related applications. There are many different metrics
of network centrality. Adjusting the existing network centrality
metrics for MOEAs in network applications is nontrivial, and
more likely we have to give new forms of network centrality
based on the specific optimization problems.

B. Contributions of This Paper

1) We find that in network transport the two critical per-
formance metrics, network capacity and average number
of hops, have a deep connection, i.e., they can both
be mathematically expressed in terms of node routing
betweenness. Based on this, we formulate a bi-objective
optimization problem of transport process applied to a
variety of real-world complex networks; one of the ob-
jectives is to maximize network capacity, and the other is
to minimize the average number of hops. By solving this
problem, we obtain the optimal edge weight assignments
and the related routing paths, resulting in the best trade-
off between network transport capacity and efficiency. To
the best of our knowledge, our work is the first to provide
a bi-objective optimization model for transport processes
on complex networks.

2) We propose a MOEA called network centrality guided
MOPSO (NC-MOPSO) to solve the network transport
optimization problem. Specifically, within the framework
of MOPSO, we propose an edge centrality based hybrid
population initialization strategy and a node centrality
inspired local search strategy to enhance respectively
the quality of initial solutions and the exploration of
the search space. We also analyze the space and time
complexity of NC-MOPSO.

3) We conduct extensive comparative experiments on both
network models and real-world networks to validate the
performance of NC-MOPSO. Specifically, we compare
NC-MOPSO with five state-of-the-art MOEAs in terms
of three most popular metrics of solution quality. The
experimental results show that NC-MOPSO outperforms
these competitors in all cases. In addition, the conver-
gence property and computational cost of NC-MOPSO
are analyzed with simulation.

The remainder of this paper is organized as follows. Section
II provides an overview of related works. In Section III, we
present the traffic model and network transport optimization
problem. In Section IV, we introduce the framework of NC-
MOPSO. The experimental results and performance analysis
are provided in Section V. Finally, this paper is concluded in
Section VI.

II. RELATED WORKS

The related works of our paper are presented in three parts.
First, we give an introduction to network centrality. Then, we
provide a review of network transport optimization in the field
of network science. The last part is a brief introduction to the
interaction between MOEAs and complex networks.

A. Network centrality

Network centrality is a key measurement in network science
that can characterize the structural importance of nodes, edges,
and even subgraphs in a network. This measurement helps to
find the critical components that have a great influence on
the dynamical processes, e.g., transport processes, happened
in networks. There are many forms of network centrality in
the literature [14]. The most representative one is betweenness
centrality, which is thus employed in our work.

The node (or edge) betweenness is normally defined as
the fraction of shortest paths between node pairs that pass
through the node (or edge) of interest [15]. This definition can
be adjusted for specific applications. For instance, to better
quantify the importance of a node or edge in the network
transport with SWP strategy, this metric should be extended
to considering the routing paths instead of the shortest paths,
which is called routing betweenness centrality [16].

It has been widely acknowledged that betweenness central-
ity facilitates optimizing the function of complex networks.
For example, [17] presented an alternative topology control
mechanism based on betweenness centrality, which improves
network delivery efficiency and reduces node energy consump-
tion in communication networks. Guan et. al. [18] proposed
an improved routing strategy that achieves load balance in
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scale-free networks by redistributing traffic load from nodes
of large betweenness to nodes of small betweenness. In view
of the proliferation of user-centric service instances across the
Internet, [19] developed an effective heuristic approach to deal
with the complexity and limitations of their distributed place-
ment. This approach relies on node betweenness centrality to
migrate service facilities towards near-optimal locations.

In our work, we utilize the routing betweenness centrality in
the mathematical analysis of network transport performance.
Moreover, we develop a simple edge centrality metric based on
routing betweenness of nodes, and further employ this edge
centrality to design an efficient initialization strategy in the
optimization algorithm.

B. Transport Optimization on Complex Networks

In the past few decades, transport processes in various
complex networks have aroused great attention. The biggest
concern is the traffic congestion problem. Many methods have
been put forward to alleviate traffic congestion and enhance
the transport capacity of networks. Essentially, the transport
capacity of a network depends mainly on its topological
structure. The networks with scale-free topology tend to have
an uneven distribution of traffic load, which limits their
transport capacity. Many attempts have been made to optimize
the network topological structures, such as removing some
bottleneck nodes or edges and adding some edges between
nodes with long distance [20].

Another effective way to improve network capacity is to
optimize resource allocation in complex networks. Network
resources, including edge bandwidth and node processing
capability, are usually constrained. Thus, it is necessary to
optimize the usage of these limited resources. Wu et al. [21]
provided an efficient allocation strategy of node processing
capability based on the node usage probability. A global
dynamic bandwidth allocation strategy was proposed in Ref.
[22], which set the bandwidth of each link to be proportional
to the length of real-time queue. Liu et al. [23] studied the joint
optimization of traffic flow rate and node processing capability
in complex communication networks.

The above strategies are however often costly or not practi-
cal in real applications since they are devoted to manipulating
the hard factors, such as network topology and resource. A
more practical direction is to optimize the routing strategy of
the traffic. Traditional SP strategy is vulnerable to traffic con-
gestion because it only considers path length. Other enhanced
routing strategies consider more factors, such as node degree
[24], node load [25], memory information [26], and next-
nearest neighbors [27]. These routing strategies can achieve
larger network capacity than the SP strategy since more infor-
mation are used in their routing decisions, nevertheless, their
computational cost is also higher. Moreover, [9] provided a
simple heuristic algorithm for routing optimization on complex
networks, which can suppress traffic congestion and achieve
much higher network capacity.

The aforementioned works mainly focus on the optimization
of network capacity, which may be at the cost of degenerating
other important transport performance metrics, e.g., average

number of hops. Therefore, how to balance the conflicting per-
formance metrics when all of them are favored is an interesting
problem. Our work tackles this problem with a multi-objective
optimization framework. Specifically, we formulate a network
transport optimization problem with two mutually exclusive
objectives, network capacity and efficiency, and solve it with
an improved evolutionary algorithm.

Note that [9] is the closest among others to our work, it
is however about single-objective optimization and algorithm
design. Specifically, the authors discussed how to improve
network capacity only, which is a single-objective optimization
problem. They did mention the average number of hops in their
paper, nevertheless they neither gave an explicit expression of
this quantity nor optimized it. In our work, we find mathemat-
ically that the two objectives, network capacity and average
number of hops, have a deep connection, i.e., they can both
be expressed in terms of node routing betweenness. Based on
this, we present a bi-objective optimization model for the en-
hancement of network capacity and efficiency simultaneously.
According to our analysis, these two objectives are conflicting,
which further motivates us to design and implement efficient
evolutionary algorithms to solve the bi-objective optimization
problem.

C. The Interaction between MOEAs and Complex Networks

The multi-objective optimization framework is readily to
deal with plenty of real-world problems involving multiple
conflicting optimization objectives [28], [29], [30], [31]. When
referring to the conflict of objectives, it means that no single
solution exists that simultaneously optimizes each objective.
A multi-objective optimization problem (MOP) is defined as
(take the minimization problem as an example)

minF (X) = (F1(X), F2(X), . . . , Fm(X))T , (1)

where m is the number of objective functions, and X =
(x1, x2, . . . , xD)T is a D-dimensional decision vector, belong-
ing to a D-dimensional decision space Ω. Given two decision
vectors X1 and X2 (∈ Ω), we say X1 dominates X2 or X2 is
dominated by X1 if the following conditions satisfied:

Fi(X1) ≤ Fi(X2), ∀i = 1, 2, . . . ,m. (2)

The solution set of a MOP is known to be a Pareto front (PF)
[28], [29], which consists of a bunch of individual solutions
that cannot dominate each other.

The multi-objective evolutionary algorithms (MOEAs),
which can search the Pareto solutions, have been successfully
applied to many MOPs in complex networks. In network
vulnerability assessment, Zhang et al. [32] formulated a bi-
objective optimization problem, which simultaneously maxi-
mizes the destructiveness and minimizes the cost of an attack
on the network, and further solved this problem with an
improved version of NSGA-II. Zhou et al. [33] investigated the
problem of improving the robustness of scale-free networks
against both node-based and link-based attacks, which is
finally treated in a multi-objective framework, and they further
proposed a two-phase MOEA to solve this problem. In the
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network clustering problem, Gong et al. [34] provided a multi-
objective discrete particle swarm optimization algorithm to
minimize two evaluation objectives termed as kernel k-means
and ratio cut. In addition, a problem-specific MOEA/D was
developed to solve the so-called tradeoff barrier coverage
problem in wireless sensor networks [35].

Network science can be in turn employed to improve evolu-
tionary algorithms. Du et al. [36] systematically explored the
evolutionary algorithms as networked interaction systems and
analyzed the effects of population structure and information
fusion strategies on the performance of the algorithms. Wu
et al. [37] proposed a novel PSO algorithm, which allows
particles to adaptively move in a static scale-free network for
a more efficient search. Moreover, in [38] a network science
inspired heterogeneous learning strategy is introduced into
PSO, where high-degree particles utilize more information
from neighbors for self-improving while low-degree particles
tend to maintain the diversity by learning themselves.

Enlightened by the aforementioned works, we employ the
theory of network centrality from network science to enhance
a representative MOEA, which is MOPSOCD [39], so that
it can efficiently solve the given multi-objective transport
optimization problem in complex networks.

III. PROBLEM STATEMENTS

In this section, we present the network transport opti-
mization problem in detail. Firstly, we provide the widely
used traffic model. Secondly, we introduce the metrics for
evaluating network transport processes. Finally, we formulate
a MOP in network transport.

A. Traffic Models

Network transport is a fundamental and ubiquitous process
in reality, e.g., packet transmission in the Internet and
passenger travel in transport networks. Despite the different
nature of transport processes in various networks, they
have four common essential elements: generation, storage,
forwarding, and routing of various quantities. A traffic
model is thus required to involve these critical elements to
characterize the essence of network transport. For the sake
of concreteness, we take packet transport in communication
networks as an instance to elaborate the frequently used
traffic model. The edges are assumed to have weights in
communication networks, which can be associated with the
bandwidth of edges in practice. The traffic model [9] of
communication networks is given as follows:

Generation: Each node generates packets with a rate of λ,
thus at each time step on average Nλ packets will be inserted
into the network, where N represents the number of nodes.
The source node of each packet is the one that generates
it, while the destination node of each packet is randomly
selected from the network excluding the source node. In this
case, each node can be the source or destination of a packet.

Storage: Each node has an infinite queue for buffering
packets abiding by the first-in-first-out (FIFO) rule, which
is a representative way to schedule packets. When a node
generates or receives a packet, it will append the packet to

the tail of the queue.
Forwarding: The processing capability of a node is usually

limited. At each time step, a node i is assumed to be able to
deliver at most Ci packets. For simplicity, we assume that all
nodes have the same processing capability, i.e., Ci = 1. Note
that our optimization framework and algorithm can also be
applied for other settings of node processing capability. When
a node forwards a packet, it will first check the corresponding
destination node; if the destination is one of its neighbors,
the packet will be delivered directly to the destination and
then be removed immediately; otherwise, the node will send
the packet to the next hop determined by the given routing
strategy.

Routing: There could be multiple paths between the source
and the destination, and the routing strategy selects the
optimal path for delivering packets. In our work, we use the
SWP routing strategy in network transport.

Given an undirected weighted network G = (V,E, w⃗),
where V is the node set with N nodes, E is the edge set of
M edges, and w⃗ = (w1, w2, . . . , wM )T is a M -dimensional
vector, where we represents the weight of edge e. A path in
the network is referred to a sequence of edges, where each
pair of adjacent edges in the sequence share a node, and
each such shared node can only occur once in the path. In
the SWP strategy, the routing cost of a path is the sum of
the weight values of all edges in the path. Let us denote an
arbitrary path between nodes a and b by Path(a ↔ b). The
routing cost of Path(a↔ b) is calculated as

L(Path(a↔ b)) =
∑

e∈Path(a↔b)

we, (3)

where e is an edge belonging to Path(a↔ b) and its weight
is we, a component of w⃗. Among all the paths between nodes
a and b, we select the one of the minimum routing cost as the
optimal path between nodes a and b. Note that the optimal
path from node a to node b and the reverse are the same in
the undirected weighted network, and there may be multiple
optimal paths between nodes a and b. Let π∗

ab(w⃗) be the set of
optimal paths between nodes a and b for a given edge weight
vector w⃗, i.e.,

π∗
ab(w⃗) = argmin

Path(a↔b)

∑
e∈Path(a↔b)

we. (4)

B. Metrics of Network Transport
We employ two representative metrics to evaluate the

network transport processes: network capacity and average
number of hops. We shall show here that these two metrics are
both determined by the routing betweenness centrality, which
is a straightforward extension of the normal betweenness
centrality in network science.

Definition 1 (Routing Betweenness Centrality [16]): In an
undirected weighted network G = (V,E, w⃗), as defined in the
above, the routing betweenness centrality of node i is defined
as

Bi(w⃗) =
∑

a̸=i ̸=b

ni
ab(w⃗)

nab(w⃗)
=

∑
a ̸=i ̸=b

∑
π∈π∗

ab(w⃗) δiπ

|π∗
ab(w⃗)|

, (5)
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where nab(w⃗) is the number of optimal paths between nodes
a and b given an edge weight vector w⃗, which is equal to
|π∗

ab(w⃗)|; ni
ab(w⃗) is the number of optimal paths between

nodes a and b that also pass through node i, i.e.,

ni
ab(w⃗) =

∑
π∈π∗

ab(w⃗)

δiπ, (6)

where

δiπ =

{
1, if node i is on path π,

0, otherwise.
(7)

Note that ni
ab(w⃗) and ni

ba(w⃗) are equal, i.e., the network is
symmetric.

According to this definition, we can infer that the nodes
with large betweenness bear more traffic load than the nodes
with small betweenness, which is why the onset of traffic
congestion is often observed at nodes of large betweenness.

Generally, when the packet generation rate λ surpasses a
critical value λc, traffic congestion begins to happen; hence,
the critical packet generation rate is usually taken as a metric
of network capacity.

Definition 2 (Critical Packet Generation Rate [40]): Sup-
pose that each node can forward at most one packet per time
step, the critical packet generation rate can be calculated as

λc =
N − 1

max
i∈N

Bi(w⃗)
, (8)

where max
i∈N

Bi(w⃗) represents the largest routing betweenness

of nodes given an edge weight vector w⃗, and N is the number
of nodes in the network.

The average number of hops is another main indicator for
the performance of network transport. According to the SWP
strategy, we can figure out the routing paths between any two
nodes and thus the average number of hops of the network
transport.

Definition 3 (Average Number of Hops): The average num-
ber of hops of the transport process in a network is defined
as

Havg =

∑
a ̸=b,a∈V,b∈V hab

N(N − 1)
, (9)

where hab is the number of hops (intermediate nodes) in the
routing path between node a and node b, N is the number of
nodes in the network.

Theorem: In an undirected and weighted network, when the
SWP strategy is employed in the routing decision, the average
number of hops of the transport process can be calculated as

Havg =

∑N
i=1 Bi(w⃗)

N(N − 1)
, (10)

where Bi(w⃗) represents the routing betweenness of node i
given an edge weight vector w⃗.

Proof: For a pair of nodes a and b, its corresponding number
of hops can be calculated as

hab =
n1
ab(w⃗)

nab(w⃗)
+

n2
ab(w⃗)

nab(w⃗)
+ ...+

nN
ab(w⃗)

nab(w⃗)

=

∑N
i=1,a ̸=i̸=b n

i
ab(w⃗)

nab(w⃗)
,

(11)

where nab(w⃗) and ni
ab(w⃗) are the same as in Eq. (5); ni

ab(w⃗)
nab(w⃗)

provides the probability that node i is on the routing paths
between nodes a and b. Then, the total number of hops of all
node pairs is

Htot =

N∑
j=2

h1j +

N∑
j=1,j ̸=2

h2j + ...+

N∑
j=1,j ̸=n

hnj

=
∑

a̸=1 ̸=b

n1
ab(w⃗)

nab(w⃗)
+

∑
a̸=2 ̸=b

n2
ab(w⃗)

nab(w⃗)
+ ...+

∑
a ̸=N ̸=b

nN
ab(w⃗)

nab(w⃗)
.

(12)
According to Eq. (5), Eq. (12) can be further simplified as

Htot = B1(w⃗) +B2(w⃗) + ...+BN (w⃗) =

N∑
i=1

Bi(w⃗). (13)

Thus, the average number of hops of the network transport
can be calculated as

Havg =
Htot

N(N − 1)
=

∑N
i=1 Bi(w⃗)

N(N − 1)
. (14)

■
C. Multi-objective Optimization Formulation

We consider the simultaneous optimization of network ca-
pacity and average number of hops in our work. The tunable
parameter is the edge weight vector. For a specific edge weight
vector, we can obtain the corresponding routing paths based on
SWP strategy. Then, we can calculate the routing betweenness
of all nodes through Eq. (5). When node routing betweenness
is available, network capacity and average number of hops
can be calculated through Eqs. (8) and (10). An immediate
problem is: can we find the optimal edge weight vector for
both network capacity and average number of hops?
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Fig. 1. A simple undirected weighted network for illustration purpose.

It is however very challenging to address this problem,
since these two metrics are contradictory in that enhancing one
suppresses the other. We take a simple instance to illustrate this
conflict. Fig. 1 presents a simple undirected weighted network
with two feasible solutions of edge weight assignment, which
are shown in Fig. 1(a) and 1(b), respectively. For the first
solution (Fig. 1(a)), the network capacity is λc

(a) = 1.00
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and the average number of hops is Havg
(a) = 0.40, while

for the second solution (Fig. 1(b)), the network capacity is
λc

(b) = 1.25 and the average number of hops is Havg
(b) =

0.53. The network capacity of (b) is larger than that of
(a), yet the average number of hops of (b) is also larger
than that of (a). Note that network capacity and average
number of hops have the larger-the-better and smaller-the-
better characteristics, respectively. This instance indicates the
two metrics are contradictory in the given network transport
problem, which is consistent with the previous findings in [9].
Therefore, the ultimate goal is to find the optimal edge weight
vector leading to the best trade-off between network capacity
and average number of hops.

The multi-objective optimization framework is often
adopted to solve the problems of multiple conflicting objec-
tives. In our problem, we have two conflicting objectives.
The first one is to maximize the network capacity, which is
finally transformed into minimizing the inverse of the critical
packet generation rate λc. The second one is to minimize the
average number of hops Havg . The edge weight vector w⃗ is
the final variable determining the values of λc and Havg . Our
bi-objective optimization problem is formally given as follows,

min
w⃗

F1 =
1

λc
,

min
w⃗

F2 = Havg,

s.t. 0 < we ≤ 1, w⃗ = (w1, w2, . . . , wM )T .

(15)

By substituting Eqs. (8) and (10) into Eq. (15) and replacing
the intermediate variable Bi(w⃗) with Eq. (5), the complete
mathematical programming formulation is given as

min
w⃗

F1 =
max
i∈V

∑
a ̸=i̸=b

∑
π∈π∗

ab
(w⃗) δiπ

|π∗
ab

(w⃗)|

N−1 ,

min
w⃗

F2 =

∑N
i=1

∑
a̸=i̸=b

∑
π∈π∗

ab
(w⃗) δiπ

|π∗
ab

(w⃗)|

N(N−1) ,

π∗
ab(w⃗) = argmin

Path(a↔b)

∑
e∈Path(a↔b) we,

δiπ =

{
1, if node i is on path π,

0, otherwise,
s.t. 0 < we ≤ 1, w⃗ = (w1, w2, . . . , wM )T .

(16)

Our optimization problem is essentially a constrained contin-
uous MOP and the solution is a set of optimal compromises,
the so-called Pareto set. The optimization of the single metric,
i.e., network capacity, is already NP-hard [9], [10]. Therefore,
we shall call for an evolutionary computation framework to
solve our bi-objective optimization problem.

Remark: In reality, the weight of edges usually has different
meanings in different networks. Even in the same network, we
can have different definitions of edge weight. For instance,
in computer networks, the edge weight can be related to
the real cost, physical length, etc. Since our work considers
network data from different domains, we constrain the edge
weight in (0, 1] consistently for the sake of convenience. It is
worth to mention that our optimization framework is readily
to be accommodated for a specific network when the actual
constraints of edge weight are available.
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Fig. 2. An illustration of the coding schemes of our algorithm by using the
network in Fig. 1 as an instance.

IV. ALGORITHM SPECIFICATION AND IMPLEMENTATION

In this part, a new algorithm called network centrality
guided multi-objective PSO (NC-MOPSO) is presented to
solve the given bi-objective transport optimization problem.
Specifically, we first introduce the encoding and decoding
schemes of NC-MOPSO. Then, we provide the framework of
NC-MOPSO. Subsequently, we introduce in detail its two key
mechanisms: hybrid initialization and local search. Finally, we
discuss the computational complexity of NC-MOPSO.

A. Encoding and Decoding schemes

As mentioned above, the edge weight vector is the decision
variable of our optimization problem, whose components are
constrained in (0, 1]. Accordingly, our algorithm uses deci-
mal encoding. In particular, an arbitrary solution X of our
algorithm is set to be the same as edge weight vector w⃗, i.e.,
X = w⃗.

We use again the network in Fig. 1 as an example to
show the relation between the solution of our algorithm and
the optimization problem. Let us assume A is the weighted
adjacency matrix for this weighted and undirected network, in
which aij = we if nodes i and j are connected by an edge
e, and otherwise, aij = 0. Since the network is undirected,
matrix A is symmetric. Then, matrix A is determined by the
nonzero terms in the upper triangle, which store the weight
values of all edges. In other words, the nonzero terms with
natural order (from left to right row by row starting from the
top) in the upper triangle of A constitute the edge weight
vector w⃗.

An arbitrary feasible solution X ′ of our algorithm
gives an instance of edge weight vector w⃗, denoted
by w⃗′, and further produces an instance of matrix
A, denoted by A′. For a feasible solution X ′ =
(0.47, 0.46, 0.95, 0.02, 0.77, 0.51, 0.60, 0.35, 0.19)T , shown in
Fig. 1(b), the corresponding matrix A′ is given in Fig. 2. Based
on matrix A′, the routing paths between any two nodes can be
calculated with the SWP strategy. Then, the routing between-
ness, network capacity and average number of hops can be
obtained through Eq. (5), Eq. (8) and Eq. (10), respectively.
We can also obtain the values of objective functions directly
based on the whole mathematical programming formulation
(Eq. (16)), whose input is the network topology represented
by an adjacency matrix and a solution of edge weight vector.

B. The framework of NC-MOPSO

The particle swarm optimization (PSO) [41] algorithm is
a popular single-objective optimization algorithm with fast
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convergence, simple framework and easy implementation. In
PSO, a swarm of particles, initiated with random position
and velocity, fly through the solution space for targeting the
optimal solutions. In our problem, we let the position of a
particle k be pk = (x1, x2, . . . , xM )T , where xe ∈ (0, 1] is
the weight of the e-th edge and M is the number of edges
in the network. The position and velocity of particle k are
updated in the following way:

vt+1
k = ω × vtk + c1 × r1 ×

(
pbesttk − ptk

)
+ c2 × r2 ×

(
gbestt − ptk

)
pt+1
k = ptk + vt+1

k ,

(17)

where vk
t and pk

t are the velocity and position of particle k
at iteration t, respectively; ω is an inertia weight; c1 and c2
are two acceleration coefficients; r1 and r2 are two learning
coefficients, which are randomly and independently selected
from interval (0, 1); pbesttk is the best personal solution of
particle k until time t, while gbestt is the best global solution
in the entire swarm until time t.

The PSO algorithm has been extended to find the op-
timal solutions in multi-objective optimization, which are
non-dominated to each other but are superior to the rest of
solutions in the search space. The algorithm named as multi-
objective particle swarm optimization with crowding distance
(MOPSOCD) [39] is a representative extension of PSO. In
this algorithm, at each iteration, the personal best solutions
of all particles are put into an external archive, where the
comparisons between the solutions are conducted and the
dominated ones are deleted accordingly. The density of solu-
tions surrounding a solution in the archive is measured by the
crowding distance, which was first given in [11]. The global
best solution of particles is then randomly selected among the
solutions of the largest crowding distances (Empirically, top
10% of the solutions are considered). The number of solutions
in the archive grows with iterations. When the archive is
full, the solutions with the minimum crowding distance will
be discarded with priority. After the maximum number of
iteration is reached, the solutions left in the archive are the
final optimal solutions.

We employ the theory of network centrality to enhance
MOPSOCD in terms of solution quality, and hence develop
a new MOEA (Algorithm 1), named as network central-
ity guided multi-objective particle swarm optimization (NC-
MOPSO). Concretely, we propose an edge-centrality guided
hybrid initialization strategy (Algorithm 2) and a node-
centrality guided local search strategy (Algorithm 3) to en-
hance the quality of initial solutions and strengthen the explo-
ration of the search space, respectively. These two strategies
are further integrated into MOPSOCD to solve the transport
optimization problem. The effectiveness of these two strategies
is justified through experimental comparison, the results of
which are given in Table V and Fig. 3.

The framework of NC-MOPSO, as shown in Algorithm
1, consists of two parts: initialization (line 1 to line 5) and
update (line 6 to line 17). First, an initial swarm is produced
by the hybrid initialization strategy (Algorithm 2). Afterwards,
each particle updates its position and velocity according to the

Algorithm 1 Framework of NC-MOPSO Algorithm.
Input: A: network adjacency matrix; pop: swarm size; HIR:

the heuristic initialization ratio.
Output: PF solutions. Each solution corresponds to a weight

assignment.
1: S ← HybridInitialization(pop,A,HIR)(Algorithm

2);
2: V ← RandomInitialization(pop);
3: pbest← PersonalBestPosition(S,A);
4: R← SelectNondominatedSets(pbest);
5: gbest← GlobalBestPosition(R);
6: t = 1;
7: while termination condition is not satisfied do
8: V ← UpdateV elocity(V, pbest, gbest);
9: S ← UpdatePosition(S, V );

10: pbest← PersonalBestPosition(S,A);
11: R← SelectNondominatedSets(R, pbest);
12: If t%gls == 0
13: R← LocalSearch(R)(Algorithm 3);
14: End
15: gbest← GlobalBestPosition(R);
16: t++;
17: end while
18: return R

given rules, and the personal best position will be renewed
accordingly. Then, the local search (Algorithm 3) explores
the neighborhood of the solution of the smallest crowding
distance. Note that the local search is performed every gls
iterations towards a compromise between the quality of so-
lutions and the efficiency of NC-MOPSO. Finally, the global
best solution is selected from the external archive. This cycle
repeats until the stopping criterion is reached. The algorithm
returns the external archive containing the final non-dominated
solutions (PFs). The notations used in all the algorithms are
summarized in Table I.

TABLE I
NOTATIONS IN THE ALGORITHMS.

A adjacency matrix of a weighted undirected graph
M number of edges in the graph
S a swarm of particles
pop number of particles in the swarm
p a particle in the swarm

HIR heuristic initialization ratio
V set of particle velocities

pbest set of personal best positions in S
gbest global best position in S
R external archive for storing non-dominated solutions
EC set of edge centrality values of all edges
CD set of crowding distances

nei set set of the neighbors of a particle
gls interval for local search
tls number of generated solutions in the local search

C. Edge-Centrality Guided Hybrid Initialization

A good initialization mechanism can reduce the search
space and accelerate the algorithm for finding the global
optimal solution. Instead of purely random initialization, we
propose an edge-centrality guided hybrid initialization (ECHI)
to provide better initial solutions. The pseudocode of ECHI is
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shown in Algorithm 2.
In our optimization problem, defined in Eq. (15), the

network capacity is a function of the largest node routing
betweenness, while the average number of hops depends on
the average node routing betweenness. Since both objectives
are strongly correlated with node betweenness, we define the
centrality of an edge as the normalized arithmetic mean of
the routing betweenness of its two end nodes. We name it as
node-betweenness based edge centrality (NBEC). Specifically,
the NBEC of an edge e(i, j) with two end nodes i and j is

ECe(i,j) =
Bi +Bj

2
∑N

l=1 Bl

, (18)

where
∑N

l=1 Bl represents the sum of the routing betweenness
of nodes in the network. Note that there exist several distinct
definitions of edge centrality in network science. We have
tested other definitions and found that Eq. (18) is the best
form in our problem (see [42]).

Assume that the ratio of the heuristic solutions in all initial
solutions of ECHI is HIR. We first generate a given number of
random initial solutions. Then, we randomly select some of the
solutions satisfying the ratio HIR. For each of these selected
solutions, we redistribute the values of its elements according
to the edge centrality, i.e., NBEC, to ensure the edges of
larger centrality will have larger weights. The redistribution
intentionally arranges large centrality edges, which are prone
to be congested in the transport process, with large weights,
so that the SWP routing strategy reduces the dependency of
these edges. This is in favor of the transport process.

Algorithm 2 Edge-Centrality Guided Hybrid Initialization.
Input: A: network adjacency matrix; pop: swarm size; HIR:

the heuristic initialization ratio.
Output: Initial swarm S.

1: S ← RandomInitialization(pop);
2: h← pop ∗HIR;
3: count = 1;
4: while count ≤ h do
5: p← S(count);
6: EC ← CalculateEdgeCentrality(A, p);
7: [EC, ind1]← Sort(EC,′ descend′);
8: p← Sort(p,′ descend′);
9: for i = 1 to M do

10: p(ind1(i))← p(i);
11: end for
12: count++;
13: end while
14: Return S

D. Node-Centrality Guided Local Search

The technique of local search has been increasingly used to
hybridize evolutionary algorithms, which can find better PFs
by exploring the neighborhood of current solutions. We pro-
pose a node-centrality guided local search (NCLS) strategy to
strengthen the exploration of solution space. The pseudocode
of NCLS is presented in Algorithm 3.

In the NCLS, we first select a solution with the smallest

crowding distance from the current external archive. Based on
the selected solution, we calculate the routing betweenness
of all nodes, and pick the node with the largest routing
betweenness. We then add a random value to the current
weight of each edge connected to that node. In this way, we
obtain a new solution, which is taken as a neighbor of the
selected solution. Similarly, we can generate another neighbor
based on the new solution and so on. For all generated
solutions, we merge them into the external archive, which
enhances the diversity of current solutions.

The idea of NCLS is to suppress the maximum node routing
betweenness in an iterative way, so that the traffic becomes
more evenly distributed on the nodes. This increases the
threshold of traffic congestion and thus improves transport
performance.

Algorithm 3 Node-Centrality Guided Local Search.
Input: A: network adjacency matrix; R: external archive; tls:

number of generated solutions.
Output: The updated external archive R.

1: CD ← CalculateCrowdingDistance(R);
2: R← Sort(R,′ CD′,′ descend′);
3: s← size(R, 1);
4: p← R(s);
5: count = 1;
6: while count ≤ tls do
7: B ← CalculateNodeBetweeness(A, p);
8: [Bmax, Lmax]← max(B);
9: ind2 ← FindEdges(A,Lmax);

10: p← p(ind2) + rand();
11: p← p(find(p > 1)) = 1;
12: A← Update(A, p);
13: nei set(count)← p;
14: count++;
15: end while
16: R← SelectNondominatedSets(nei set, R);
17: Return R

E. Complexity Analysis

1) Space complexity: Three main memories are needed for
NC-MOPSO. The first one is for storing the adjacency
matrix of a network, which has a space complexity of
O(N2), where N is the number of network nodes. The
second one is to store particles; its space complexity
is O(M · pop), where pop and M are the number and
dimension of particles, respectively. The last one is for the
external archive, which has O(s ·M) space complexity,
where s is the size of external archive. Note that the sizes
of all these memories are given in the initialization and
will not increase with iterations.

2) Time complexity: The time complexity mainly lies in
the update process of NC-MOPSO, which includes the
objective function computation, local search, crowding
distance computation, and non-dominated comparison
in the population and external archive. The objective
function computation has O(pop · N2) time complexity,
where pop and N are the numbers of particles and nodes,
respectively. The time complexity of the local search is
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O(tls · N2), where tls is the number of generated solu-
tions in the local search. Sorting the solutions based on
crowding distance in the external archive has O(s · log s)
time complexity, where s is the size of the archive. The
time complexity for the non-dominated comparison is
generally O(pop · s). Assuming that the size of external
archive is proportional to the number of particles, the
time complexity for the non-dominated comparison is
O(pop2). Collectively, the overall time complexity for
each iteration is O(max(pop2, N2)).

V. EXPERIMENTAL RESULTS

In this section, we assess the performance of NC-MOPSO
in network transport optimization. First, we introduce the
baseline algorithms and the network data. Then, we present
three popular performance metrics and the parameter settings
for MOEAs. Finally, the results of comparative experiments
are provided.

A. Baseline Algorithms and Network Data

To validate the performance of NC-MOPSO, we compare
it with the following MOEAs:

1) MOPSOCD [39], a popular MOEA, employs the crowd-
ing distance mechanism to deal with the global best
solution selection and filter nondominated solutions when
the external archive is full.

2) MOPSOCDELS [43], an improved version of MOP-
SOCD, employs the elitist learning strategy (ELS) to
avoid early convergence and improve optimization ef-
ficiency. The ELS adopts a Gaussian perturbation to
maintain the diversity of particles and is fairly effective
for global optimization.

3) NSGA-II [11], one of the most popular MOEAs, selects
individuals according to the Pareto dominance relation
and propagates the offspring in an iterative way. The main
feature of this algorithm is that it adopts the elitist non-
dominated sorting by using the crowding distance as a
ranking criterion.

4) GSPSO [44], one of the state-of-the-art MOEAs, en-
hances the PSO with the geometric structure of PF. In this
MOEA, the inherent geometric structure of the current PF
is exploited to directly guide the flight of particles.

5) CMOPSO [45] is a competitive mechanism based multi-
objective particle swarm optimizer. The particles in
CMOPSO are updated on the basis of the pairwise
competitions performed in the current swarm at each
iteration.

Note that these comparison algorithms can be directly
applied to our network transport optimization problem without
modification.

The comparative experiments are conducted on differ-
ent types of networks. The dataset contains six undirected
weighted networks; two of them are generated by network
models and the others are real-world networks. Specifically,
we employ two widely used network models, namely the
Barabasi-Albert (BA) model [46] and Watts-Strogatz (WS)
model [47], to generate scale-free networks and small-world

networks, respectively. The scale-free networks exhibit the
power-law degree distribution, in which a small percent of
nodes have much larger degree than the others. While the
small-world networks have approximately exponential degree
distribution and high clustering, which are different from
the scale-free networks. In addition, we select four different
types of real-world networks, i.e., the power grid (118-bus)
[48], email network (Email-enron-only) [48], road network
(Barcelona) [48] and Internet (Uninett) [49]. Table II char-
acterizes these networks with three properties: number of
nodes N , number of edges M and average node degree
⟨D⟩ = 2M/N .

TABLE II
MAIN CHARACTERISTICS OF SIX TEST INSTANCES.

Instance N M ⟨D⟩
BA300 300 597 3.98
WS300 300 600 4
118-bus 118 179 3.03

Email-enron-only 143 623 8.71
Uninett 74 101 2.73

Barcelona 1020 1798 3.52

B. Performance Metrics and Parameter Settings
Three popular metrics are employed to evaluate the per-

formance of different algorithms, namely hypervolume (HV)
[50], inverted generational distance (IGD) [51] and set cov-
erage (C-metric) [50]. HV and IGD measure the quality of
solutions in terms of convergence and diversity; C-metric com-
pares two solution sets from the point of Pareto dominance.

The HV metric gives the total volume bounded by the points
on the Pareto front P and a reference point z∗ in the objective
space, which is as follows:

HV (P, z∗) =

{∪
k

a(zk)|∀zk ∈ P

}
. (19)

In this equation, zk is the k-th individual point in the Pareto
front P , a(zk) is the rectangle area bounded by the reference
point z∗ and the point zk. The reference point z∗ is empirically
set to be (max(F1),max(F2)) if the optimization problem has
two minimization objectives, where F1 and F2 are the two
objective functions. The larger value of HV means that the
Pareto front is closer to the lower left, which indicates the
algorithm produces better solutions.

The definition of IGD is provided in Eq. (20), where P ∗

denotes the true PF and P is an obtained solution set. d(z, P )
is the smallest Euclidean distance from z ∈ P ∗ to all points
in P . The smaller value of IGD, the better solution. Note that
the true PF means the exact solution of PF, which are usually
unknown for real-world optimization problems, however they
can be approximated by selecting non-dominated solutions
from all solutions obtained by different MOEAs [52].

IGD {P, P ∗} =
∑

z∈P∗ d (z, P )

|P ∗|
. (20)

The C-metric C(P,Q) is defined as the percentage of the
solutions in Q dominated by at least one solution in P (see
Eq. (21)), where P and Q are two PFs. Assuming P ∗ is the
true PF, the lower the value of C(P ∗, P ), the better P is.

C (P,Q) =
| {q ∈ Q|∃z ∈ P : z dominates q} |

|Q|
. (21)
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TABLE III
PARAMETER SETTINGS OF THE ALGORITHMS.

Parameters pop maxgen c1 c2 r1
Value 200 500 1.5 2 (0, 1)

Parameters r2 pc pm tls gls
Value (0, 1) 0.9 1

M
300 50

The parameter settings of all the concerned MOEAs are
shown in Table III. The first and third rows present the
parameters; the second and fourth rows provide their values.
pop is the population size and maxgen is the maximum
number of iterations; c1 and c2 are two acceleration coeffi-
cients for PSO-based algorithms; r1 and r2 are two learning
coefficients for PSO-based algorithms; pc and pm represent the
crossover probability and the mutation probability in NSGA-
II, respectively; tls is the number of generated solutions in
the local search, which performs every gls iterations. For fair
comparison, the common parameters are set be the same for
the MOEAs.

C. Performance Evaluation

The results of comparative experiments are presented in
this part. Specifically, we shall first show the performance of
NC-MOPSO for different values of HIR. Next, we present
the experimental results to show the effectiveness of the two
improvement operators: ECHI and NCLS. Finally, we give the
performance comparison between NC-MOPSO and the five
representative MOEAs.

The initial population of NC-MOPSO is composed of
heuristic and random solutions. The proportion of the heuristic
solutions in all the initial solutions is controlled by HIR.
We study how the value of HV changes with HIR to obtain
an adequate HIR setting. The means and standard deviations
of HV over ten independent runs of NC-MOPSO on the
six instances are shown in Table IV, where HIR50 means
50% of initial solutions are generated heuristically and so on.
We can see that HIR50 shows an advantage over HIR0 and
HIR100. For totally randomly initialization, the particles have
difficulties and are not efficient to find the best solution, while
in the case of purely heuristic initialization, the particles are
prone to fall into the local optimum. The hybrid initialization
with both heuristic and random solutions, i.e., ECHI, makes
a necessary compromise between efficiency and diversity.
Therefore, we fix HIR value to be 50% in the following
experiments.

TABLE IV
HV (MEAN(STD)) FOR DIFFERENT HIR (HIR0, HIR50 AND HIR100) ON

EACH TEST INSTANCE.
Instance HIR0 HIR50 HIR100
BA300 0.3563(0.0382) 0.6047(0.0021) 0.5832(0.0044)
WS300 0.4251(0.0175) 0.4822(0.0269) 0.3047(0.0432)
118-bus 0.3504(0.0105) 0.3743(0.0085) 0.3119(0.0261)

Email-enron-only 0.4431(0.0436) 0.5807(0.0093) 0.5135(0.0219)
Uninett 0.4101(0.0176) 0.7970(0.0044) 0.4578(0.0133)

Barcelona 0.3618(0.0348) 0.5989(0.0062) 0.4712(0.0396)

NC-MOPSO adopts two critical improvement operators,
ECHI (see Section IV-C) and NCLS (see Section IV-D), to
enhance the quality of solutions. We show the effectiveness
of these two operators through comparing NC-MOPSO with
MOPSOCD and MOPSOCD in; MOPSOCD is the original

algorithm without any improvement; MOPSOCD in is an
improved version of MOPSOCD by employing only ECHI;
NC-MOPSO is also an improved version of MOPSOCD,
which utilizes both ECHI and NCLS. Table V shows the
means and standard deviations of IGD over ten independent
runs of these three algorithms. We can observe that for all
the instances, the IGD of MOPSOCD in is smaller than that
of MOPSOCD, which validates the effectiveness of ECHI.
In other words, the performance of MOPSOCD with ECHI
is better than that with random initialization. Furthermore,
we find that the IGD of NC-MOPSO is smaller than that
of MOPSOCD in, which verifies the effectiveness of NBLS.
Fig. 3 presents the distributions of non-dominated solutions of
these three algorithms on the instance Uninett. It is obvious
that NC-MOPSO achieves better solutions than MOPSOCD
and MOPSOCD in, which further confirms the effectiveness
of these two proposed improvement operators.

TABLE V
IGD (MEAN(STD)) FOR MOPSOCD, MOPSOCD IN AND NC-MOPSO

ON EACH TEST INSTANCE.
Instance MOPSOCD MOPSOCD in NC-MOPSO
BA300 0.2303(0.0421) 0.0116(0.0008) 0.0026(0.0001)
WS300 0.0982(0.0108) 0.0621(0.0157) 0.0012(0.0004)
118-bus 0.0121(0.0071) 0.0061(0.0019) 0.0012(0.0004)

Email-enron-only 0.1249(0.0484) 0.0163(0.0044) 0.0021(0.0008)
Uninett 0.0128(0.0028) 0.0055(0.0005) 0.0008(0.0002)

Barcelona 0.2046(0.0121) 0.0749(0.0017) 0.0017(0.0007)
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Fig. 3. Non-dominated solutions (PFs) of MOPSOCD, MOPSOCD in and
NC-MOPSO for the Uninett instance.

Next, we compare NC-MOPSO with the five baseline al-
gorithms on the three popular metrics: IGD, C-metric and
HV. The results of each algorithm are obtained by averaging
over ten independent runs. The statistical results of IGD and
HV are presented in Tables VI and VII, respectively. For a
network instance, the performance ranking of each algorithm
is given in square brackets, while the standard deviation of
metric values is in parentheses. We conduct the Wilcoxon
rank sum test at a 5% significance level to check whether
the differences between the metric values yielded by NC-
MOPSO and the other compared algorithms are significant.
The symbols †, § and ≈ indicate that the performance of
NC-MOPSO is better than, worse than and similar to the
baseline algorithms, respectively. Table VIII shows the overall
performance of all algorithms via the Wilcoxon rank sum
test. Figs. 4, 5 and 6 present the box plots of IGD, C-
metric and HV of each algorithm for the six test instances,
where “-CD”, “-CDELS”, “GS-”, “C-”and “NC-” represent
MOPSOCD, MOPSOCDELS, GSPSO, CMOPSO and NC-
MOPSO, respectively.
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TABLE VI
PERFORMANCE COMPARISON AMONG MOPSOCD, MOPSOCDELS, NSGA-II, GSPSO, CMOPSO AND NC-MOPSO IN TERMS OF IGD

(MEAN[RANKING](STD)).
Instance MOPSOCD MOPSOCDELS NSGA-II GSPSO CMPSO NC-MOPSO
BA300 0.2303†[5](0.0421) 0.1358†[3](0.0041) 0.1215†[2](0.0181) 0.1384†[4](0.0122) 0.2891†[6](0.0167) 0.0026[1](0.0001)
WS300 0.0982†[3](0.0108) 0.0707†[2](0.0043) 0.1412†[6](0.0101) 0.0998†[4](0.0231) 0.1334†[5](0.0162) 0.0012[1](0.0004)
118-bus 0.0121†[5](0.0071) 0.0072≈[4](0.0065) 0.0024≈[2](0.0012) 0.0047†[3](0.0016) 0.0319†[6](0.0166) 0.0012[1](0.0004)

Email-enron-only 0.1249†[4](0.0484) 0.0633†[2](0.0171) 0.2313†[6](0.0581) 0.0663†[3](0.0128) 0.1941†[5](0.0311) 0.0021[1](0.0008)
Uninett 0.0128†[5](0.0028) 0.0075†[3](0.0013) 0.0046†[2](0.0015) 0.0144†[6](0.0071) 0.0108†[4](0.0009) 0.0008[1](0.0002)

Barcelona 0.2046†[4](0.0121) 0.2023†[3](0.0024) 0.2911†[6](0.0061) 0.1321†[2](0.0219) 0.2276†[5](0.0095) 0.0017[1](0.0007)
†/§/ ≈ 6/0/0 5/0/1 5/0/1 6/0/0 6/0/0

TABLE VII
PERFORMANCE COMPARISON AMONG MOPSOCD, MOPSOCDELS, NSGA-II, GSPSO, CMOPSO AND NC-MOPSO IN TERMS OF HV

(MEAN[RANKING](STD)).

Instance MOPSOCD MOPSOCDELS NSGA-II GSPSO CMOPSO NC-MOPSO
BA300 0.3563†[5](0.0382) 0.4367†[3](0.0139) 0.4349†[4](0.0193) 0.4492†[2](0.0102) 0.2957†[6](0.0158) 0.6381[1](0.0001)
WS300 0.4251†[3](0.0175) 0.4684†[2](0.0051) 0.1791†[6](0.0108) 0.3424†[5](0.0374) 0.3611†[4](0.0198) 0.6297[1](0.0021)
118-bus 0.3503†[5](0.0105) 0.3695†[4](0.0199) 0.3947†[2](0.0194) 0.3701†[3](0.0117) 0.3255†[6](0.0369) 0.4273[1](0.0038)

Email-enron-only 0.4431†[4](0.0436) 0.5081†[2](0.0215) 0.3111†[6](0.0448) 0.4859†[3](0.0184) 0.3834†[5](0.0172) 0.5740[1](0.0042)
Uninett 0.4101†[6](0.0176) 0.4532†[3](0.0141) 0.4811†[2](0.0107) 0.4425†[4](0.0118) 0.4247†[5](0.0074) 0.5868[1](0.0036)

Barcelona 0.3618†[3](0.0348) 0.3465†[4](0.0164) 0.2348†[6](0.0184) 0.4229†[2](0.0132) 0.3367†[5](0.0167) 0.5989[1](0.0062)
†/§/ ≈ 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0
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Fig. 4. The box-plot of the metric: IGD for all the test instances.

TABLE VIII
OVERALL PERFORMANCE COMPARISON OF THE SIX ALGORITHMS ON THE

SIX INSTANCES.
Mean ranking Total †/§/ ≈

MOPSOCD 4.33 12/0/0
MOPSOCDELS 2.92 11/0/1
NSGA-II 4.17 11/0/1
GSPSO 3.42 12/0/0
CMOPSO 5.16 12/0/0
NC-MOPSO 1.00 -

-CD -ELS NSGA-II GS- C- NC-

0.7

0.75

0.8

0.85

0.9

0.95

1

C
-m

e
tr

ic

(a) BA300

-CD -ELS NSGA-II GS- C- NC-

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
-m

e
tr

ic

(b) WS300

-CD -ELS NSGA-II GS- C- NC-

0.7

0.75

0.8

0.85

0.9

0.95

1

C
-m

e
tr

ic

(c) 118-bus

-CD -ELS NSGA-II GS- C- NC-

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C
-m

e
tr

ic

(d) Email-enron-only

-CD -ELS NSGA-II GS- C- NC-

0.6

0.7

0.8

0.9

1

C
-m

e
tr

ic

(e) Uninett

-CD -ELS NSGA-II GS- C- NC-

0.4

0.5

0.6

0.7

0.8

0.9

1

C
-m

e
tr

ic

(f) Barcelona
Fig. 5. The box-plot of the metric: C-metric for all the test instances.

We note that smaller values are better for IGD and C-
metric, while the opposite is true for HV. According to the
results in Tables VI-VIII and Figs. 4-6, we can conclude
that NC-MOPSO is superior to the other five competitors
for almost all the test instances. Specifically, in terms of
IGD (Table VI and Fig. 4), NC-MOPSO has the smallest
value on all the test instances, which means it has the best
performance among all the algorithms. The poor IGD results
of MOPSOCD and CMOPSO indicate that their solutions have
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Fig. 6. The box-plot of the metric: HV for all the test instances.

small diversity. Note that for the 118-bus network, NSGA-
II and MOPSOCDELS have similar IGD values with NC-
MOPSO. For C-metric (Fig. 5), the value of NC-MOPSO is
less than one for all the test instances, which means that part
of the solutions obtained by NC-MOPSO cannot be dominated
by the true PF. The other algorithms all have poor performance
in terms of C-metric. Especially for GSPSO, the C-metric
values are always one for all the instances, which means all
the solutions are dominated by the true PF. With regard to the
HV metric (Table VII and Fig. 6), NC-MOPSO is also superior
to the other five algorithms. The mean ranking and the total
number of †/§/≈ (Table VIII) show that overall NC-MOPSO
outperforms all the other comparison algorithms.

Moreover, we present the non-dominated solutions of all
algorithms for each instance graphically in Fig. 7 to highlight
the advantage of NC-MOPSO. We can clearly see from the
distributions of non-dominated solutions that NC-MOPSO
obtains the higher-quality solutions, i.e., better PFs, compared
with the other algorithms.

Finally, we analyze the convergence of all MOEAs along
with their actual CPU time. The results of convergence are
presented in Fig. 8, where the HV metric is considered. We
see that all the MOEAs generally have good convergence,
some of which have occasionally slight fluctuations due to the
local minima problem. In addition, we compare the actual run
time of all the MOEAs on instance BA300 in Table IX. We
can find that given the same experimental setting, the CPU
time of NC-MOPSO is slightly larger than MOPSOCD and
MOPSOCDELS, yet much smaller than the other comparison
algorithms. Overall, the comparative experiments demonstrate
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Fig. 7. Non-dominated solutions (PFs) of all the algorithms for each instance.
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that NC-MOPSO not only obtains high-quality PFs, but also
has good convergence property and relatively low computa-
tional cost. The good performance of NC-MOPSO is mainly
owing to the following two facts:

1) An edge-centrality guided hybrid initialization, ECHI, is
employed to generate high-quality initial solutions.

2) A node-centrality guided local search, NCLS, is adopted
to expand the search space and improve the quality of
solutions.

TABLE IX
THE CPU TIME OF EACH ALGORITHM ON INSTANCE BA300. THE

ITERATION NUMBER IS t = 500. EXPERIMENTAL ENVIRONMENT: INTEL
CORE I5 PROCESSOR (2.3 GHZ, 4 CORES) AND 8 GB RAM.

Algorithms CPU time(s)
MOPSOCD 3074.39
MOPSOCDELS 3027.81
NSGA-II 12570.31
GSPSO 13790.21
CMOPSO 6311.51
NC-MOPSO 3215.91

VI. CONCLUSION

In this paper, transport optimization on complex networks is
transformed as a bi-objective optimization problem by simul-
taneously maximizing the network capacity and minimizing
the average number of hops. The main advantage of this
transformation is that it can provide decision makers with
a holistic view for optimizing the network transport perfor-
mance. Furthermore, a network centrality based MOEA named
NC-MOPSO is proposed to solve the optimization problem. In
this algorithm, an edge-centrality guided hybrid initialization
is proposed to provide high-quality initial solutions, and a
node-centrality guided local search is developed to enhance
the exploration of search space. The comparative experimental
results on both network models and real networks demonstrate
the high quality and efficiency of the proposed algorithm. Note
that in our work we only consider static complex networks.
Transport optimization on dynamic and multi-layer networks
needs to be further explored. Moreover, how to apply our
optimization framework and algorithm for the network flow
involving multiple source-sink paths is an open problem.
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