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ABSTRACT In command of modern intelligent operations, in addition to solving the problem of multi-unit
coordinated task assignment, it is also necessary to obtain a suitable plan according to the needs of decision
makers. Based on these requirements, we established a multi-stage bi-objective weapon-target assignment
model, and designed a new algorithm with niche and region self-adaptive aggregation (named MOEA/
D-NRSA) based on the decomposition-based multi-objective evolutionary algorithm (MOEA/D) to obtain
richer solutions that meet the preferences of different decision makers. Compared with MOEA/D, MOEA/
D-NRSA has advantages in improving the convergence and maintaining the distribution of the solution.
On the one hand, it contains a population evolution method based on niche technology to obtain better
offspring; on the other hand, it has a new neighborhood selection and update strategy. This strategy first
clusters the individuals in the objective space to divide into different regions, in which the subproblems can
independently select the appropriate aggregation mode according to the clustering density of the region and
update its neighborhood. This strategy can improve the uneven distribution of individuals and maintain the
diversity and distribution of the population. Numerical experiments selected state-of-the-art algorithms for
comparison, which proved the superiority of MOEA/D-NRSA.

INDEX TERMS Multi-stage weapon target assignment (MWTA), decomposition-based multi-objective
evolutionary algorithm (MOEA/D), niche, clustering, ideal-nadir Tchebycheff approach.

I. INTRODUCTION
The revolution of intelligent warfare has effectively organized
various weapon platforms, thereby achieving a high level of
ability matching and increasing the chance of more efficient
operations [1]. However, how to solve the task allocation
problem and obtain more diverse solutions is still an urgent
problem to be solved. The weapon-target assignment (WTA)
problem we studied is crucial in the multi-platform coop-
erative task allocation process. To obtain suitable solutions,
we must start with this problem. Lloyd and Witsenhausen
have shown that the WTA is NP-Complete [2], it involves
how to obtain a set of weapon-target pairs, which can satisfy
the decision maker’s combat objectives in terms of combat
effectiveness and loss [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Pavlos I. Lazaridis .

WTA is divided into two categories: static WTA (SWTA)
and dynamic WTA (DWTA). Originally modeled by
Manne [4], the SWTA defines a scenario wherein a known
number of targets are detected and a finite number of
weapons (interceptors), with known probabilities of suc-
cessfully destroying the targets able for a single exchange.
In SWTA, all weapons engage with targets in a single
stage, and no subsequent actions are considered, since time
is not considered in the problem. The DWTA problem is
much more complicated than the SWTA, so the current
research results mainly focus on SWTA. The original model
was defined by Manne [4], based on this, researchers such
as Ahuja et al. [1], Lee et al. et al. [5], Karasakal [6],
and Kline et al. [7] proposed various new models with
reference to change battlefield requirements. In terms of
algorithms, genetic algorithms (GA) [6], [8], [9], ant colony
algorithms (ACO) [10], [11], and other heuristic intelligent
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optimization algorithms [12]–[14] are widely used in SWTA
problems.

However, due to the continuous development of war
modes, DWTA problems and related models are more suit-
able for describing the current war situation with a larger area,
multiple combat platforms, and a larger time scale. DWTA
contains a time dimension, which is a multi-stage global
decision-making process. In solving the DWTA problem, all
stages of the offense or defense must be considered, and its
distribution results must be solved. Less attention has been
given to the DWTA as compared to the SWTA. Thus, there
are fewer heuristic algorithms shared among researchers.
Currently, hybrid heuristics are often used to solve DWTA
problems. Xin et al. [15], [16], solved this problem by using
virtual permutation (VP) and tabu search heuristics (TSH);
and Leboucher et al. [17] used Hungarian algorithm and
GA-PSO hybrid algorithm in solving DWTA problems.

In the context of DWTA, this paper studies a kind of
derivative problem of DWTA, that is, the multi-stage weapon
target allocation problem (MWTA). This problem divides the
entire combat process into different stages. Each stage needs
to make decisions based on the previous stage results and
the changes in the battlefield in the new stage and allocate
weapons to the target. The decision-making process is the
same at each stage, due to different problem scale (number of
targets, number of weapons, etc.), there are also differences
in computational complexity. The multi-stage weapon target
assignment (MWTA) problem is intermediate between the
SWTA one and the DWTA one. It also takes time windows
into account, but does not have a fully dynamic process as
the DWTA does.

At the level of problem models and algorithms, the objec-
tive of traditional WTA problems is focused on operational
effects. It can also be called the target-based goal, which
aims to maximize the expected damage of the targets, while
the goal of the asset-based one is to minimize the expected
loss. Therefore, many researchers transform this problem
into a series of multi-objective optimization problems with
constraints. In the process of solving such problems, various
multi-objective evolutionary algorithms (MOEA), which are
widely used as the primary method to approximate the true
Pareto front (PF) of MOPs, have also become the first choice
of experts [18]–[20].

As for the study of MOEAs, Schaffer [21] designed the
first MOEA. Recently, proposed by Zhang and Li [22],
a branch of MOEA based on decomposition has become
increasingly popular. It decomposes a multi-objective prob-
lem into a set of scale subproblems and optimizes them simul-
taneously. Because of its advantages in solution efficiency,
many researchers have conducted in-depth research on it and
achieved certain results [23]–[27].

Unlike the general WTA model, the model studied in this
paper considers the possible losses of the weapon platform
itself. The task assignment process is to assign the appropriate
weapons to the required targets. In the problem model design
process, it transforms the WTA problem into a bi-objective

optimization problem. We would like to maximize combat
results while ensuring fewer combat losses and develop an
optimization model with the above two conflicting optimiza-
tion goals.

In terms of algorithms, after some researchers used
MOEAs to solve the task assignment problem, we also used
the MOEA/D framework and improved it to form a new
algorithm to solve the problem, aiming to generate more
differentiated and richer solutions.

The main contributions of this paper can be summa-
rized as follows. Firstly, a bi-objective dynamic collaborative
weapon-target assignmentmodel is formulated. The objective
used to describe the cost in the model includes ammunition
consumption and considers the loss of the combat platform
itself. Secondly, a population evolution strategy based on
niche technology suitable for the MOEA/D framework is
proposed. It selects parents based on the sharing degree
of individuals and produces excellent offspring. Thirdly,
a neighborhood update strategy based on ideal point and nadir
point is proposed to maintain the diversity of evolutionary
groups and improve the distribution of solutions.

The remainder of the paper is organized as follows.
In Section II, we formulate the problem. The improved algo-
rithmwe designed is explained in Section III Some numerical
experiment is carried in Section IV. The conclusion and
future work are presented in Section V.

II. PROBLEM FORMULATION
Models of WTA problems depend on many factors, e.g.,
offense or defense strategies, features of targets and weapons,
etc. The combat scenarios considered in this paper are as
follows. A total ofW weapon platforms with vet types attack
an enemy area together. Our weapons need to explore, dis-
cover, and strike against enemy targets continuously. The
entire offensive process of weapon-target assignment can be
divided into multiple stages, where one stage is the minimum
combat time unit. Suppose there are S stages in total.

The offense overview and timeline of each stage are shown
in Figs. 1 and 2. In Fig. 1, the units of the enemy and
ours are represented by three colors of red, blue, and gray.
The red units are our offensive weapons, the blue and gray
units together constitute the enemy forces in the area of
engagement. Among them, the blue ones are targets that are
known and are within our attack range, and the gray ones
are unknown targets or targets that cannot be attacked yet.
Throughout the offensive process, we stipulate that the length
of each phase is equal. In stage t , our entities launch attacks
on enemy forces within the range according to the current
allocation plan.

In Fig. 2, St and St+1 are the starting times of stage t and
t+1, respectively. The start of the attack marks the beginning
of stage t . In stage t , the tasks that need to be performed
include offense, advancement, and action adjustment. Each
stage contains dynamic events, which are the destruction of
old targets (blue dot) and the appearance of new targets (red
dot).
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FIGURE 1. Multi-stage weapon-target assignment scenario.

FIGURE 2. Timeline of task assignment.

Returning to Fig. 1, in stage (t + 1), the processing of
dynamic events generated in the previous stage has been
completed, the original blue targets were eliminated and dis-
appeared, and the unknown gray targets were found to turn
blue. Afterward, it is necessary to continue to attack existing
targets according to the adjusted plan.

Given the set of targets and the set of available weapons,
our goal is to find the best weapon-to-target pairing to maxi-
mize the probability of damage, while minimizing operations
costs.

Through the above description, the MWTA problem is
transformed into a bi-objective optimization model. The two
optimization goals are the overall damage probability and the
cost of operations. The objectives and related constraints will
be described below.

A. EXPECTED DAMAGE OF ALL TARGETS
Based on the characteristics of the target-based model,
the first objective is to maximize the total expected damage

oncoming targets through all stages. The formulation of the
expected damage at stage t is expressed as:

F1 (t) =
T∑
j=1

vj

(
1−

S∏
s=t

W∏
i=1

(
1− pij(s)

)xij(s)) (1)

where t and s are the indexes of offense stages, X t =
[Xt ,Xt+1, . . . ,XS ] with Xt =

[
xij(t)

]
W×T is the decision

matrix at stage t , and xij(t) is a binary decision variable taking
a value of one (i.e., xij(t) = 1 ) if weapon i is assigned to
target i at stage t , or zero (i.e., xij(t) = 0) otherwise.W (t) and
T (t) represent the remaining number of weapons and targets
at stage t , respectively (W (1) = W ,T (1) = T ). vj means
the threat value of target j. pij(s) denotes the probability that
weapon i destroys target j at stage s, which is also called kill
probability. pij(s) and vj can be obtained in advance based on
the theory of shooting and performances of weapons.

B. CONSUMPTION
Apart from satisfying the tactical requirement, a WTA deci-
sion should also cut down the operational costs. Therefore,
when designing the second objective function, we would like
to minimize ammunition consumption; besides, in the course
of military operations, each side struggles to preserve itself
and destroy the other. In the actual situation, considering
that the enemy may attack our weapon platform, we need to
minimize or even avoid enemy attacks on weapon platforms.

When the second objective was designed, we comprehen-
sively considered the above two requirements and combined
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the minimization of ammunition consumption with platform
losses to form a new goal. It can be presented as follows:

F2 (t) =
S∑
s=1

T∑
j=1

W∑
i=1

[
vwireji(s)+ vai(s)

]
xij(s) (2)

where S represents the total stage of the attack, T is the
number of targets, and W is the number of weapons. vai(s)
denotes the ammunition consumption of weapon i at stage s,
and vwi is the value of weapons. reji(s) represents the ability
of the target to resist our attacks at stage s, and its value can
be calculated by:

reji(s) = qji, (3)

where qji represents the probability of target j hitting i.
Through the above analysis, we get two optimization

objectives:

max F1 (t) ,min F2 (t) .

C. CONSTRAINTS
W∑
i=1

xij(t) ≤ Wmj ∀j ∈ Ij, ∀t ∈ It (4)

T∑
j=1

xij(t) ≤ Eui ∀i ∈ Ii,∀t ∈ It (5)

T∑
j=1

S∑
t=1

xij(t) ≤ Ni ∀i ∈ Ii (6)

Ii = {1, 2, . . . ,W }; Ij = {1, 2, . . . ,T };

It = {1, 2, . . . , S}

xij(t) ≤ Usij(t) ∀i ∈ Ii, ∀j ∈ Ij, ∀t ∈ It (7)

Constraints (4) and (5) are the feasibility constraints of our
weapon platform. Constraint (4) indicates that the number of
weapons that can attack target j at each stage cannot exceed
Wmj. This constraint is linked to ammunition consumption
for each target at each stage. Constraint (5) means that the
maximum number of units attacked by each weapon in a
single stage is Eui. In most cases, a single weapon can only
attack one target, therefore, Eui is set to 1 in this paper.
Constraint (6) indicates the amount of available ammunitions
of weapon i. The last constraint limits the use of weapon i,
where Usi is a binary variable like xij, but Usij is used to
constrain the availability of i at stage t .Whenweapon i cannot
attack j (e.g., beyond the range or exhausted ammunition), let
Usij be 1; otherwise, Usij = 0.
The deterministic model is given as follows:{

max F1 (t)
min F2 (t)

s.t. (4), (5), (6) and (7).

The proposed model divides the offense time interval into
several fixed stages. During the solution process, the length of
each stage is flexible and can be determined according to the

actual situation. A minimum length is required to ensure that
the platforms can operate effectively at each stage. With the
increase in the stage length, the computational complexity of
themodel decreases, andwhen the length of a stage is equal to
the total time on offense, the model becomes a static version
of the assignment model.

In the above model, constraint (6) is an important feature
that distinguishes MWTA from traditional SWTA. It reflects
the impact of the time window of each stage on the avail-
ability of weapons. At the beginning of each stage, the Usij
corresponding to weapon i needs to be updated.

The above model holds a critical assumption: after the
weapon is launched, its damage probability does not change.
This is reasonable since missiles usually have active terminal
guidance.

III. DESIGN OF MOEA/D-NRSA
Since the MWTA problem to be solved in this paper is
NP-hard [2], [28], it is impossible to obtain an accurate
solution through some polynomial time algorithm. Therefore,
we design a new algorithm based on theMOEA/D framework
proposed by Zhang and Li et al. [22]. This framework decom-
poses the multi-objective problem into multiple subproblems,
optimizes them separately, and then integrates the solutions of
the subproblems to form a complete solution. Our algorithm
is called MOEA/D-NRSA. ‘‘N’’ means niche technology,
which we used for the evolution process of populations, and
‘‘RSA’’ stands for region self-adaptive aggregation method.
We divide the objective space into different regions, and
independently select the appropriate aggregation function to
guide the convergence direction of the population according
to the region’s characteristics. So MOEA/D-NRSA is mainly
dedicated to improving the convergence to a certain extent
while maintaining the distribution of the solution. The frame-
work is given in Algorithm 1. We will discuss this in detail in
the following subsections.

A. REGIONAL DIVISION AND CLASSIFICATION
When designing algorithms based on the MOEA/D frame-
work to solve bi-objective optimization problems, two main
factors need to be considered. The first is to maintain the
diversity of the evolutionary group, which is one of the most
important indicators to measure the pros and cons of the
algorithm; the second is to improve the convergence speed
of the algorithm, which is closely related to the efficiency of
solving actual problems.

In maintaining the diversity of evolutionary populations,
the clustering method is used by many experts and schol-
ars [29], but generally, this method is directly used to generate
MOEA. This paper also adopts the clustering algorithm, but
it is only used to classify the solutions into different regions
as the basis for subsequent operations to maintain population
diversity.

1) CLUSTERING METHOD
In the iterative process of the evolutionary algorithm,
as the mutation and replacement operations proceed,
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Algorithm 1 The Framework of MOEA/D-NRSA
Input:

• F1, F2: two objectives;
• N : population number (number of subproblems);
• Tm: size of mating neighborhood;
• EP: an elite population used to preserve the Pareto solution;
• MaxIter : maximum iteration;
• nReg: the number of regions generated according to the clustering results;
• thd : threshold of cluster density;
• Stopping criterion;

Output:
• EP: final elite population;
• FV : fitness;

Step 1. Initialization
1: Let EP = ∅;
2: Create an initial population Pop =

{
x1, . . . , xN

}
by uniformly randomly sampling. Evaluate the fitness value FV i of each

solution x i, FV i
=
(
F1
(
x i
)
,F2

(
x i
))

and set FV =
{
FV 1, . . . ,FVN

}
.

3: Generate N evenly distributed weight vectors λ = {λ1, . . . , λN }. Find the Tm closest weight vectors to each weight vector
based on the Euclidean distances of any two weight vectors. Denote by NS(i) =

{
i1, . . . , iTm

}
the neighbor set of the ith

subproblem.
4: Initialize the ideal point z = (z1, z2)T , required by the Tchebysheff approach, set zi = minj

(
FV i

j

)
, and nadir point znadi =

maxj
(
FV i

j

)
, i = 1, . . . ,m.

Step 2. Update
1: while MaxIter is not reached do
2: nReg is the number of cluster centers. Use Algorithms 2 and 3 to cluster all the numbers in FV and generate nReg

regions.
3: for each region k do
4: The degree of aggregation in region k is calculated by Algorithm 4.
5: Update the flag flk of region k according to the threshold thd of the degree of aggregation.
6: for each subproblem i and FV i in region k do
7: Two parents pa1, pa2 are selected in the neighborhood by Algorithm 5.
8: Generate offspring of i through parents and Algorithms 6 and 7. And we evaluate its fitness foi.
9: zi = min (zi, foi) , znadi = max

(
znadi , foi

)
, i = 1, . . . ,m

10: Through Algorithm 8 and the value of flk , update the neighborhood of i.
11: end for
12: end for
13: Update EP.
14: end while

new offspring are produced in new positions. At this
time, the solution distribution may be uneven. Most
of the existing processing methods are oriented to the
entire solution set. This paper uses clustering methods to
divide individuals into regions with different aggregation
degrees for processing separately, thereby maintaining the
group’s diversity. The specific clustering rules are given by
Algorithm 2.

Algorithm 2 first randomly selects a center point for each
class, and the remaining individuals are merged into adjacent
classes according to the distance from each class. Then re-
select the clustering points, form a new class according to the
minimum distance principle, and finally repeat this process
until the clustering process is stable.

In Algorithm 1, we define nReg as the number of regions,
so in Algorithm 2, we randomly generate nReg cluster centers
cci. d(i, j) represents the degree of dissimilarity between i and
j, expressed by the Euclidean distance between the two points.

d(i, j) =
√∣∣xi1 − xj1∣∣2 + · · · + ∣∣xip − xjp∣∣2 (8)

where i and j are both p-dimensional vectors.
The evaluation value Ev can be calculated by:

Evi =
∑
p∈cli

|cci − p|2 (9)

Ev =
nReg∑
i=1

Evi. (10)
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Algorithm 2 Clustering Rules
Input: nReg, FV .
Output: cc, cl.
1: Set cluster center cc, cc =

{
cc1, cc2, . . . , ccnReg

}
.

2: Set the corresponding class as cli, i ∈ {1, 2, . . . , nReg}.
3: For i ∈ {1, 2, . . . ,N }, let bo =

max
{
max

{
F1
(
x i
)}
,max

{
F2
(
x i
)}}

;
4: On the corresponding coordinate axis, using bo as the

boundary, the solution space is equally divided into nReg
intervals.

5: Let Ev,Ev′ = 0.
6: while i ≤ nReg do
7: Randomly select an individual in interval[

(i−1)bo
nReg ,

i·bo
nReg

]
as cci;

8: Calculate d (cci, p) ; cci, p ∈ FV , cci 6= p;
9: Let some p with the most remarkable similarity join
cli;

10: Calculate Ev, Ev = Ev+ Evi;
11: i = i+ 1;
12: end while
13: while Evmin is not reached do
14: Ev = Ev′;
15: for each qj ∈ clj do
16: Randomly choose qj, qj 6= ccj;
17: Calculate d(qj, p), qj ∈ cli, p ∈ Pop, qj 6= p;
18: Calculate Ev′, Ev′ = Ev′ + Ev′j;
19: end for
20: if Ev′ < Ev then
21: for k ≤ nReg do
22: cck = qj;
23: end for
24: end if
25: end while

After obtaining the clustering results, we divide the
operation area according to it. As shown in Fig. 3,
we divide regions in the objective space, and each region has
4 boundaries (lb1) , (lb2) , (ub1) and (ub2). Two diagonals
(lb1, lb2) , (ub1, ub2) are generally used to identify a region.
Suppose the four boundaries of region i are (lb1i),

(lb2i), (ub1i) and (ub2i), and the farthest points in the
four directions are pti

(
x1ti, x

2
ti

)
, pdi

(
x1di, x

2
di

)
, pli

(
x1li, x

2
li

)
, and

pri
(
x1ri, x

2
ri

)
, respectively. The center point of the i-th cluster is

cci
(
x1cci, x

2
cci

)
. The boundaries of each region can be obtained

by Algorithm 3.

2) CLUSTER DENSITY CALCULATION
After completing the regional division, we introduce the con-
cept of influence to calculate the aggregation density of each
subspace.

Here, the influence of a certain solution j in the space on
the i-th solution is described as:

γ
(
lj→i

)
: R→ R (11)

FIGURE 3. Clustering scenario of solution space.

Algorithm 3 Boundary Calculation
Input: pt , pd , pl, pr , nReg, cc.
Output: lb1i, lb2i, ub1i, ub2i.
1: if i = 1 then
2: x1ri−1 = −x

1
li;

3: end if
4: if i = nReg then
5: x1li+1 = x1ri;
6: end if
7: if x1ri ≤ x

1
li+1 then

8: ub2i =
(
x1li+1−x

1
ri

)
2 ;

9: ub1i = x2ti;
10: if x1ri−1 ≤ x1li then

11: lb2i =
(
x1li−x

1
ri−1

)
2 ;

12: lb1i = x2di;
13: else
14: lb2i = x1li;

15: lb1i =
(
x2di−x

2
ti−1

)
2

16: end if
17: else
18: ub2i = x1ri;

19: lb1i =
(
x2di+1−x2ti

)
2 ;

20: if x1ri−1 ≤ x
1
li then

21: lb2i =
(
x1li−x

1
ri−1

)
2 ;

22: lb1i = x2di;
23: else
24: lb2i = x1li;

25: lb1i =
(
x2di−x

2
ti−1

)
2 ;

26: end if
27: end if

Among them, lj→i represents the Euclidean distance of
individual j to i, and γ is the mapping function, which trans-
forms lj→i into the influence of j on i.
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Therefore, the cluster density D(a) of the region a can
be defined as the mean value of all points in the region to
influence the center point. After gettingD(a), we will classify
the region a according to the density threshold thd .

D(a) =

∑m
i=1 γ (j, i)
m

(12)

The specific algorithm is as follows:

Algorithm 4 Cluster Density Calculation
Input: a, cca, thd .
Output: D(a), fla.
1: Count the number of solutions in a as m;
2: Let the solution set in a be Sa, Sa = {Sa1, . . . , Sam};
3: Let SumD(a) = 0.
4: while i ≤ m do
5: Calculate γ

(
lSai→cca

)
;

6: SumD(a) = SumD(a)+ γ
(
lSai→cca

)
;

7: i = i+ 1;
8: end while
9: D(a) = SumD(a)/m;
10: if D(a) ≤ thd then
11: fla = 1;
12: else
13: fla = 0;
14: end if

In Algorithm 4, γ
(
lj→i

)
can be calculated by Gaussian

influence function:

γ
(
lj→i

)
= γ (r) =

1

σ
√
2π

e−
r2

2σ2 (13)

where r represents Euclidean distance of individual j to i. The
threshold thd is the concentration density of the true PF.

B. MODIFICATION OF MOEA/D FRAMEWORK
In this subsection, the Ideal-Nadir Tchebycheff approach that
can modify the general MOEA/D framework is designed.
In addition, a new neighborhood update and population evo-
lution strategy has also been proposed to generate more good
offspring, thereby improving the overall performance of the
algorithm.

1) POPULATION EVOLUTION STRATEGY
In the basic MOEA/D framework, a subproblem and its
neighbor have the exact equivalence when mating them to
generate a new solution. This approach will make the process
of selecting parent solutions more random and affect the
convergence speed of the population. Therefore, when select-
ing the parent class, we hope that the weights of different
individuals in the neighborhood are different, and the quality
of the solution can be improved through appropriate weight
settings.

Based on this idea, we propose a niche-guided matching
method. This method refers to the niche technology based on
the sharingmechanism [30], and introduces the group sharing

degree as the weight of the individual. We use Si to represent
the sharing degree of individual i in the group, then:

Si =
∑
j∈NSi

sh[d(i, j)], (14)

where d(i, j) can be obtained by (8), sh is the sharing function
that measures the similarity level between individuals i and j,
which is defined as:

sh[d(i, j)] =

 0, d(i, j) > σshare

1−
d(i, j)
σshare

, d(i, j) < σshare
(15)

where σshare is a predefined niche radius [31]. We set
the value of σshare to Tm/2, and Tm is the size of the
neighborhood.

The higher the sharing degree Si of an individual,
the greater the similarity between it and all other individuals
in the neighborhood, and the more hopeful it is to generate
high-quality offspring for the current subproblem. Theweight
wi of individual i in the neighborhood can be defined as:

wi =
Si∑
i Si
, i ∈ NSi. (16)

The specific algorithm is as follows:

Algorithm 5 Select Parents

Input:
{
Sj
}
, j ∈ NSi.

Output: pa1, pa2.
1: for k = 1 : 2 do
2: wj =

Sj∑
j Sj
, j ∈ NSi.

3: Choose one subproblem pak ∈ NSi based on the
probability distribution

{
wj
}
.

4: Set wpak = 0.
5: end for

After getting the parents, we need to generate offspring.
The specific details are given by Algorithm 6.

Algorithm 6 Genetic Operator
Input: xpa1 and xpa2 , wpa1 and wpa2 .
Output: Offspring of
1: pc =

wpa1
wpa1+wpa2

2: for each genetic locus l do
3: if rand < pc then
4: of (l) = x lpa1
5: else
6: of (l) = x lpa2
7: end if
8: end for

The offsprings generated by Algorithm 6 may not satisfy
the constraints. In this case, we need to repair the solu-
tion [32]. The random repair mechanism used is as follows:
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Algorithm 7 Random Repair Mechanism
Input: An infeasible solution of , constraints.
Output: A feasible solution of ′

1: Transform of into the corresponding 0-1 matrix X ;
2: Find the rows or columns that violate this constraint;
3: Calculate the number of redundant 1s in these

rows or columns, denote as num.
4: Randomly replace the num 1s in these rows or columns

with 0 to obtain X ′.
5: Retransform the 0-1 matrix X ′ into of ′.
6: Regionk is a region where the target value FV i of sub-

problem i is located.
7: Calculate FV of ′ .
8: if FV of ′ is not in Regionk then
9: Regenerate offspring of .
10: end if

2) IDEAL-NADIR TCHEBYCHEFF APPROACH
For a long time in the past, manymethods to decomposeMOP
into scalar optimization subproblems have been proposed,
such as the weighted Tchebycheff approach [22], NPI-style
Tchebycheff approach [33], ε-constraint approach [24],
angle-based approach [34], etc. The most representative of
the methods is the weighted Tchebycheff approach [22].

These approaches have their advantages and disadvan-
tages, and they apply to different problems. This subsection
mainly discusses the Tchebycheff approach and its improve-
ment measures. A scalar optimization subproblem based on
the weighted Tchebycheff approach with the ideal point is
determined by:

min gte (x | λ, z)

= max
1≤i≤m

{
λi

∣∣∣FV i(x)− zi
∣∣∣}

s.t. x ∈ Pop (17)

where λ = (λ1, . . . , λm)
T is the weight vector of the scalar

optimization subproblem, and z = min
{
FV i(x) | x ∈ Pop

}
,

i ∈ {1, 2, . . . ,m} is the ideal point.
The problems of the Ideal-based Tchebycheff approach are

as follows:

(1) As the iterative process continues to advance, points
close to zwill be retained, which will cause the solutions
of the subproblems to continue to gather in the direction
of z. When the distance between the solutions of the sub-
problems corresponding to different λ gradually shrinks,
it means that the neighborhood structure is destroyed.

(2) The subproblem solution continues to converge in the
direction of z will bring another problem. For a convex
Pareto front, this trend will destroy the diversity of the
evolutionary population, thereby affecting the distribu-
tion of the solution and reducing the reliability of the
solution [25].

To avoid the above problems, we considered the nadir-
based Tchebycheff proposed by [35] in the process of

population convergence. Unlike the ideal-based Tchebycheff,
this method strives to make the optimization objective prin-
ciple of each subproblem to the nadir point in the process of
convergence. the scalar optimization subproblem i may also
be formulated by:

max gnte
(
x | λ, znad

)
= min

1≤i≤m

{
λi
∣∣∣znadi − FV

i (x)
∣∣∣} (18)

where FV is the objective function vector of a solution, znad

is the nadir point. Under the guidance of the nadir point,
the population will have better sparsity.

(17) and (18) are often only suitable for MOPs with nor-
malized objective functions. Thus, when the ranges of the
objectives are on very different scales, we normalize the
objective value to avoid the influence of different dimensions.
The subproblem is defined in the following form:

For ideal point:

min gte (x | λ, z) = max
1≤i≤m

{
λi

∣∣∣∣∣FV i(x)− zi
znadi − zi

∣∣∣∣∣
}

(19)

For nadir point:

max gnte
(
x | λ, znad

)
= min

1≤i≤m

{
λi

∣∣∣∣∣ znadi − FV
i(x)

znadi − zi

∣∣∣∣∣
}

(20)

Let

F̃V
i
te =

FV i
− Zi

Znadi − Zi
,

F̃V
i
nte =

Znadi − FV i

Znadi − Zi
,

i = 1, . . . ,m, (21)

the optimization goal becomes:

min gte(F̃V te | λ, 0). (22)

max gnte(F̃V nte | λ, 0). (23)

This section has designed an Ideal-Nadir Tchebycheff
approach (INT), which uses both the ideal point and the nadir
point to guide the convergence of the population. Its working
principle is shown in Fig. 4. In the figure, according to the
clustering rules designed in Section III-A, there are different
regions in the objective space, and the individual aggregation
density of each region is different. We can judge its aggre-
gation density according to the signs fl i of each region, and
then choose the appropriate reference point and aggregation
function to guide the convergence of the individual. For areas
with high concentration density (RE3 and RE4), choose the
ideal point as the reference point, otherwise (for RE1 and
RE2) choose the nadir point as the reference point. In this
way, it can be ensured that the solutions are distributed more
widely and more uniformly in the objective space.

In the figure, λ1 to λ4 are the weights corresponding to
the subproblems. In a two-dimensional space, the relation-
ship between the weight λi and the essential direction λ′i of
subproblem i is: (λi1, λi2) =

(
λ′i2, λ

′

i1

)
.
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FIGURE 4. Ideal-Nadir Tchebycheff approach.

FIGURE 5. Correspondence between subproblems and weight vectors.

In the process of using INT, there will also be a problem-
the unification of the weight vector. When the subproblem i
updates the neighborhood based on the ideal point z or the
nadir point znad , it corresponds to different weight vectors
λi or λ′i. What we need to do is to integrate λiI and λ

i
Na into

the same weight vector cluster λ.
Fig. 5 shows the objective space, the weight vectors λ1I ,

λNI , λ
1
Na and λ

N
Na are set to (ε,1-ε), (1-ε, ε), (ε,1-ε) and (1-ε,

ε), where ε is a very small number to avoid abnormal selec-
tion. In the objective space, generate N uniformly distributed
weight vectors along the clockwise direction to correspond to
N subproblems, respectively. Because λ1I = λ1Na and λ

N
I =

λNNa, λ
i
I = λ

i
Na can be obtained.

For the subproblem i in the figure, when the ideal point
is selected, its corresponding weight vector is λiI ; when the
nadir point is selected, its weight vector is λN+1−iNa . Since

FIGURE 6. Neighborhood update strategy.

λN+1−iNa = λN+1−iI , the different weight vectors correspond-
ing to subproblems i can all be represented by cluster λI , and
(20) becomes:

max gnte
(
x | λ, znad

)
= min

1≤i≤m

{
λN−i+1

∣∣∣∣∣ znadi − FV
i(x)

znadi − zi

∣∣∣∣∣
}

(24)

3) NEIGHBORHOOD UPDATE RULES
The idea of the traditional MOEA/D neighborhood update
strategy is as follows: optimize each subproblem by using
the information of several adjacent subproblems, make these
problems develop in a favorable direction, and finally con-
verge to the Pareto frontier.

The neighborhood update strategy of MOEA/D generally
takes the aggregate function value of the solution and the
subproblem as the fitness value, and replaces all inferior
solutions in the neighborhood by comparing the fitness value
of the new solution with other solutions in its neighborhood.

As shown in Fig. 6, the aggregate function value of FV ′ is
calculated by (17). Through comparison in the neighborhood,
it can be seen that x3, x4, and x5 are all inferior solutions
compared to FV ′ and need to be replaced by FV ′. Although
this operation will speed up the convergence rate of the
population, it will also destroy the diversity of the population.
As the iteration progresses, the number of effective solutions
in other neighborhoods will decrease sharply, which reduces
the number of parent samples that can be selected during
the evolution of some subproblems and affects the evolution
efficiency of the population, making the algorithm fall into a
local optimum.

Therefore, when we update the neighborhood, we need to
selectively eliminate inferior solutions instead of replacing
them all. In this way, the diversity of the population can be
maintained to a certain extent.

71840 VOLUME 9, 2021



X. Wu et al.: Modified MOEA/D Algorithm for Solving Bi-Objective MWTA Problem

As an important part of MOEA/D, the neighborhood
structure plays an important role in iteration and popula-
tion update. In the basic MOEA/D framework, the solu-
tions to adjacent subproblems are considered similar to each
other. A further consideration is that the closer the two
subproblems are, the more similar their solutions will be.
Based on this idea, a neighborhood screening strategy is pro-
posed here.We define the relationship between subproblems i
and j as [36]:

Rij = e−δ‖λi−λj‖
2
, (25)

where λi and λj are the weight vectors of subproblems i and
j, respectively. δ is a parameter used to adjust the size of Rij.
If we count all problems j related to subproblems i, and sum
all Rij. Then the proportion rij of any subproblem j in all
relations of i can be defined as:

rij =
Rij∑
j Rij

, j = 1, . . . , IS. (26)

Combining the contents of the previous subsection and this
subsection, we can obtain a complete neighborhood update
strategy, and the details are given in Algorithm 8.

Algorithm 8 combines the contents of the two subsec-
tions. First, select the individual’s convergence mode (ideal
point or nadir point) according to the flag flk of the region k .
Then, compare the offspring of i with the points in the neigh-
borhood NS(i), and count the number of inferior solutions.
Finally, the probability distribution can be obtained according
to (26). Choose the solution that needs to be eliminated.

According to (25) and (26), we can understand that the
closer the inferior solution is to the offspring, the easier it
is to be eliminated; otherwise, the corresponding subproblem
is more likely to be retained. Through this rule, the diversity
of the solution set can be maintained.

C. COMPLEXITY ANALYSIS
In this subsection, We use N to denote the population size
(Pop), m to denotes the number of objectives.

There are two parts in MOEA/D-NRSA, the clustering
process and the process of generating non-dominated solu-
tions. Suppose the number of iterations of the clustering
process is Irc, then the time complexity of clustering algo-
rithm isO (m · N · nReg · Irc). The process of generating non-
dominated solutions is consistent with MOEA/D which is
O (m · N · Tm). So, the time complexity of MOEA/D-NRSA
is O [m · N · (nReg · Irc + Tm)].

IV. EXPERIMENT AND RESULT ANALYSIS
A. COMPARISON ALGORITHM
In order to prove the effectiveness of the improve-
ment measures, we compared MOEA/D-NRSA with five
other algorithms, including multi-objective particle swarm
optimization algorithm (MOPSO) [37], non-dominated sort-
ing genetic algorithm II (NSGA-II), and two improved
MOEA/D algorithms: MOEA/D with adaptive weight adjust-
ment (MOEA/D-AWA) [38] and MOEA/D with dynamical

Algorithm 8 Neighborhood Update Strategy

Input: NSi, of i, λofi, fo, flk .
Output: Pop, FV .
1: zi = min

(
zi,FV i

)
;

2: znadi = max
(
znadi ,FV i

)
;

3: Let the set of inferior solutions be Iso, Iso = ∅;
4: if flk = 1 then
5: for each subproblem j ∈ NS(i) do
6: if gte

(
f̃o | λj, 0

)
< gte

(
F̃V

j
te | λj, 0

)
then

7: Let x j merge into Iso;
8: end if
9: end for
10: else
11: for each subproblem j ∈ NS(i) do
12: if gnte

(
F̃V

j
nte | λN+1−j, 0

)
<

gnte
(
f̃o | λN+1−j, 0

)
then

13: Let x j merge into Iso;
14: end if
15: end for
16: end if
17: Count the number of elements contained in Iso and record

it as m.
18: for each inferior solution q do
19: Calculate Rjq.
20: end for
21: rjq =

Rjq∑
q Rjq

, q = 1, . . . ,m.
22: for each inferior solution q do
23: Choose inferior solution based on the probability

distribution
{
rjq
}
.

24: if Inferior solution q is selected then
25: xq = of i,FV q

= fo;
26: end if
27: end for

resource allocation (MOEA/D-DRA) [39]. For the original
versions ofMOEA/D andNSGA-II [40], we apply the unified
crossover and random mutation operators to the algorithm
and compare them with MOEAD-NRSA.

B. ENCODING
This paper adopts decimal encoding. The length of the chro-
mosome is the total number of different types of weapon
platforms. Each weapon platform is regarded as a gene locus,
and the gene value on it indicates the number of targets that
the weapon is assigned to. The specific coding form and
operation process are the same as those introduced in [41].

Different types of weapons are not coded separately but
are integrated into the same chromosome. Their difference
lies only in the probability of destruction, the value of the
ammunition fired, and the value of the weapon itself.

Such an encoding method can guarantee that every solu-
tion satisfies the constraint (5) naturally. As to the other
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constraints, each solution will be randomly repaired by
Algorithm 7 to satisfy them.

C. PERFORMANCE METRICS
So far, there is no single performance indicator that can
comprehensively measure the performance of an MOEA.
Therefore, we have introduced several famous metrics to
compare the performance of different algorithms.

1) INVERTED GENERATIONAL DISTANCE (IGD) [42]
The IGDmetric canmeasure the diversity and convergence of
solutions simultaneously, and it can give the average distance
from a given set of non-dominated solutions to the true Pareto
front. The smaller the value of IGD (P,P∗), the better the
performance of P. The formulation is as follows:

IGD
(
P,P∗

)
=

∑
v∈P∗ d(v,P)
|P∗|

(27)

P∗ denotes a set of uniformly distributed points in the
objective space along the true Pareto front (PF) or nearly
true PF when it is hard or impossible to get the true PF; The
set of non-dominated solutions obtained by all comparison
algorithms is used as the true Pareto front in this paper. d(v,P)
is the minimum Euclidean distance between v and elements
in P.

2) GENERATIONAL DISTANCE (GD) [42]
The GD metric measures the average distance from an
inverted perspective. This metric is more sensitive to the con-
vergence of the solution. The smaller the value ofGD (P,P∗),
the better the convergence of P. Its formulation is as follows:

GD
(
P,P∗

)
=

∑
v∈P d̃ (v,P

∗)

|P|
(28)

3) DIVERSIFICATION METRIC (DM) [43]
This metric measures the spread of non-dominated solutions
on the Pareto front. The larger the value of DM, the wider
the solution of this method is distributed in the target space,
achieving a better approximation of the Pareto front. It is
calculated as follows:

DM =

√√√√ m∑
i=1

(min fi −max fi)2 (29)

where min fi and max fi are the minimum and the maximum
value of each fitness function among all non-dominated solu-
tions obtained by the algorithms.

D. PARAMETER SETTINGS AND TEST SCENARIOS
In the numerical experiment, we simulated six differ-
ent offense scenarios, each of which contains an instance
to test the algorithm’s performance in different problem
scales. Through simulation results and algorithm comparison,
we can judge whether MOEA/D-NRSA can generate distri-
bution plans that are highly differentiated and meet the needs
of different decision makers.

TABLE 1. Public parameters of algorithms.

TABLE 2. Parameters of different scenarios.

For all algorithms, we first set their public parameters of
algorithms in Table 1:
Pop represents the population size, and Gen is the number

of iterations.
The unique parameter settings in the comparison algorithm

are as follows:
(1) Parameter settings in MOPSO adopted here are the

same as those claimed in [44].

• The inertia weight: w = 0.4.
• The acceleration constants: c1 = c2 = 1.4962.

(2) Parameter settings in NSGA-II [40]:

• Probability for crossover: cr = 0.9.
• Probability for mutation: mr = 1/n. n represents the
number of decision variables.

(3) Parameter Settings in MOEA/D, MOEA/D-AWA, and
MOEA/D-DRA adopted here are the same as those claimed
in [22], [38], and [39].

• Neighborhood size: Tm = b0.1 Nc.
• Probability of selecting mate solutions: δ = 0.9.
• Maximal number of replacement: nr = b0.01 Nc.

The Table 2 gives the relevant parameters of each scenario.
Table 3 shows the settings of the public simulation param-

eters required for the simulation, where the value expressed
in the form of an interval represents that the value of the cor-
responding parameter is randomly generated in this interval.

E. RESULT ANALYSIS
In this subsection, we perform numerical experiments to com-
pare six different algorithms under six different scenarios and
analyze the results. Each scenario corresponds to an instance.
Independent runs are performed on each instance 25 times for
all algorithms. The program is implemented using MATLAB
2016b software and run on a desktop with 3.4 GHz Core
i5-7500 CPU and 8.00 GB RAM. Fig. 7 shows the PF of
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TABLE 3. Setting of public simulation parameters.

TABLE 4. Comparison of IGD.

a single run with minimum IGD value on six instances in
different scenarios.

For the instances corresponding to each scenario, we give
the mean values of the three metrics under different
algorithms. In addition, Wilcoxon’s rank-sum test with a
5% significance level was performed to compare whether
the difference between the mean values of the metrics of
MOEAD-NRSA and other algorithms is significant. The
symbols †, §, and ≈ indicate that the performance of
MOEAD-NRSA is better than, worse than, or similar to that
of the comparison algorithm according to Wilcoxon’s rank-
sum test, respectively. We set it in bold for the best average
metric value in each scenario; the standard deviation is in
parentheses below the average. The statistical results for the

metrics IGD,GD, andDMare presented in Tables 4, 5, and 6,
respectively. Fig. 7 shows the PF of a single run with mini-
mum IGD value on 6 instances in different scenarios. The
average ranking of themetrics and the statistics ofWilcoxon’s
test results are given in Table 7. Fig. 8 shows the comparison
of IGD box plots of different algorithms in 6 instances.

Through the simulation results, we can understand that
when solving small-scale problems, NSGA-II ranks first in
the three metrics of IGD, GD, and DM; and the algorithm
based on the MOEA/D framework is better in Scenario 1.
Performance is unsatisfactory. The main reason is that the
small size of the problem means that the search space is
small, and there is no noticeable difference in the weight λ
corresponding to different subproblems, which will cause the
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FIGURE 7. (a)–(f): PF of a single run with minimum IGD value on 6 instances in different scenarios.

offspring to lose diversity and make the problem fall into the
local optimum. And NSGA-II, which includes the principle
of random matching, has more advantages. As the problem
scale expands, the advantages of MOEA/D algorithms begin
to manifest, especially MOEA/D-NRSA, which ranks first
among multiple metrics.

The advantages of MOEA/D-NRSA are undeniable in
the distribution of target space points. In Fig. 7, except for
instance 1, in other medium-scale and large-scale problems
(Scenario 2 - 6), MOEA/D-NRSA can obtain solutions that
are closer to the true Pareto front. Especially at the tail of the
Pareto front, MOEA/D-NRSA obtains more non-dominated
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TABLE 5. Comparison of GD.

TABLE 6. Comparison of DM.

solutions than other algorithms. The IGD and DM values
in Tables 4 and 6 can also illustrate this advantage, which
reflects the effectiveness of the INTmethod. The INTmethod
can obtain a better approximation of the whole Pareto front
andmake the distribution of the solutionmore even,maintain-
ing the diversity of the evolutionary population to a certain
extent.

However, the improvement of DM metrics means the
decline of GD metrics. When the metric value of DM
increases, the area equivalent to P that needs to be calculated
by (28) becomes more extensive, so the metric value of
GD will become worse. This phenomenon is also reflected

in Table 3. The GD measurement value of MOEA/D-NRSA
in Table 5 does not have a great advantage. After statistics,
the GD value of MOEA/D-AWA is better. However, accord-
ing to the results of Wilcoxon’s rank-sum test, it can be
seen that the GD measures of MOEA/D-NRSA and MOEA/
D-AWA are similar, there is no significant difference between
the GD measures of MOEA/D-NRSA and MOEA/D-AWA,
indicating that the two are at the same level. The numer-
ical approximation of the GD metric also shows that the
convergence of MOEA/D-NRSA is only slightly inferior to
MOEA/D-AWA. This result proves the effectiveness of our
proposed population evolution strategy to a certain extent.
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FIGURE 8. (a)–(f): Comparison of IGD box plots of different algorithms in 6 instances.

TABLE 7. Overall performance of four algorithms on the six instances in
terms of IGD, GD, and DM metrics.

When the advantages of IGD and DM metrics are apparent,
the GD metrics can be maintained at a high level.

Fig. 8 shows the comparison of IGD box plots of different
algorithms in 6 instances. These box plots cover the mean
value and variation interval of the IGDmetric values obtained
by 6 algorithms in a total of 150 simulations in 6 examples.
By comparison, we can find that the change range of IGD of
MOEA/D-NRSA is relatively tiny in the medium-scale and
large-scale problems. Only MOEA/D-AWA has less fluctu-
ations in large-scale issues than MOEA/D-NRSA. It shows
that the algorithm’s stability is better, and it is easier to obtain
ideal results during operation.

The mean rank and the total count of †/§/≈ presented
in Table 7 shows the statistical results of the three metrics,
MOEA/D-NRSA ranks first among all algorithms. NSGA-II
has the same performance as MOEA/D, and they have certain
advantages in solving small-scale and large-scale problems,
respectively. MOEA/D-AWA ranks second with its excellent
performance in IGD and GD metrics, and its GD metrics
are even better than MOEA/D-NRSA on medium-scale
issues.

V. CONCLUSION AND FUTURE WORK
This paper mainly studies the modeling and solving methods
of heterogeneous weapon platforms’ cooperative task assign-
ment problem. Firstly, we propose a bi-objective optimiza-
tion model that can describe the multi-stage weapon-target
assignment problem. The model considers the probabil-
ity of damage, ammunition consumption, and the loss
of the platform itself. Secondly, to effectively solve the
model, the MOEA/D-NRSA method obtained by improving
the MOEA/D framework is proposed. In MOEA/D-NRSA,
the convergence and distribution of the solution are consid-
ered at the same time. In terms of convergence, a population
evolution mechanism based on niche technology is pro-
posed. This mechanism can make better use of neighborhood
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information and spontaneously select suitable parents and
produce offspring through the sharing of individuals.

On the other hand, the introduction of the INT method
achieves a better approximation to the Pareto front and
maintains the diversity of solutions. Finally, the simulation
results show the advantages of MOEA/D-NRSA over other
comparative algorithms. It does not perform well on small-
scale problems, but on medium-scale and large-scale prob-
lems, the distribution of MOEA/D-NRSA is better than other
algorithms. We know that each solution represents a kind of
offensive plan in the objective space, and the better distribu-
tion of the solution on the Pareto front is equivalent to obtain-
ing a more different plan. The advantage of MOEA/D-NRSA
in terms of distribution proves that more decision-makers can
use it to obtain offensive schemes that meet their preferences.

Judging from the current research results, the dynamics,
uncertainty, and coordination of the actual combat process
have not been well described in the model. The multi-stage
model designed in this paper is only a product between SWTA
and DWTA, and cannot fully describe the dynamics of con-
frontation. Regarding the uncertainty in the battlefield, this
paper only caters to this feature by randomly generating some
parameter values in a specific interval, rather than describing
and processing uncertain factors through models. The limita-
tionsmentioned above in this paper lead to the direction of our
future research. In terms of problem models, we can change
our thinking and design models with individuals rather than
timelines. The timeline can be used as a standard for sorting
out the logic of actions. This modelingmethod can control the
actions of each individual and simulate the dynamics of the
entire combat area. In dealing with uncertain factors, it is nec-
essary to find a quantifiable parameter to describe them and
design a treatment method for uncertain factors. Finally, it is
possible to study the specific collaborative actions between
individuals in terms of collaboration instead of describing
the collaboration through simple numerical stacking or some
connection relationships between individuals.
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