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nonsmooth multi-cluster games via a distributed
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Abstract—This paper investigates a generalized Nash equilib-
rium (GNE) seeking strategy for a class of nonsmooth multi-
cluster games. Each cluster consists of several players. The
inter-cluster graph is directed and weight-unbalanced. Moreover,
in contrast to previous works of multi-cluster games, coupled
nonsmooth inequality constraints, resource allocation constraints,
and nonsmooth payoff functions are considered simultaneously in
these multi-cluster games. For seeking the GNE of these games,
a distributed Lipschitz algorithm with the proximal-splitting
scheme is proposed. Then convergence analysis of this designed
algorithm is deduced based on Lyapunov stability theory and
convex optimization theory. Finally, some simulation results are
provided in this paper, which show the efficacy of the distributed
GNE seeking algorithm.

Index Terms—Distributed algorithms, Proximal operator,
Multi-cluster games, Nonsmooth functions, Distributed GNE
seeking

I. INTRODUCTION

In this paper, a Lipschitz GNE seeking strategy for a class
of nonsmooth multi-cluster games is investigated here. Each
cluster consists of several players. In order to minimize its
payoff function, each player in this game employs the local
strategy depending on its own and other players’ decisions.
This kind of noncooperative games has gained significant
attention in cyber security, social networks, and smart grids,
etc [1]–[5]. Each leader of the clusters can exchange the
information through a directed graph. With the requirement
of the communication topology, every player will only receive
information from its neighboring players. Consequently, dis-
tributed Nash equilibrium seeking strategy is a critical problem
for this noncooperative games [6]–[9]. This multi-cluster game
problem considers both nonsmooth payoff functions and non-
smooth inequality constraint. The nonsmooth functions may
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cause vibration of the state of the system. There are few
works can deal with this problem with coupled nonsmooth
constraints via a Lipschitz-continuous algorithm. Moreover,
this problem contains two coupled constraints. One is the
inter-cluster resource allocation condition. Another one is the
inner-cluster nonsmooth inequality constraint. Then another
main difficulty of this problem is to decouple these constraints
and design the corresponding algorithm in a fully distributed
way. Due to important applications and challenges mentioned
above, these problems have attracted increasing attention.

A. Literature review

1) Multi-Cluster Games: In many important problems,
players’ competition and cooperation behaviours exist. These
problems can be modeled as multi-cluster games that combine
noncooperative games and distributed optimization. In multi-
cluster games, leaders of clusters participate in an inter-cluster
noncooperative game. A group of numerous local players
are included in a cluster. They can be regarded as inner-
cluster collaborators that optimize the cluster payoff function
cooperatively. In recent years, distributed strategies for GNE
seeking of multi-cluster games have been widely investigated.
For a class of zero-sum games with two sub-networks, [10] in-
vestigated distributed NE seeking algorithms. [11] proposed a
unified strategy for GNE seeking of multi-cluster games. This
method reduced the computation cost and the communication
cost. For multi-cluster games, [12] designed an extremum
seeker, where agents do not have accurate expressions of local
cost functions. Aiming to multi-cluster games with inequality
constraints, [13] developed an average consensus approach
and a finite-time distributed algorithm for GNE seeking.
[14] proposed a distributed projected GNE seeking algorithm
through gradient descent for multi-cluster games, where the
global inequality constraints, local inequality constraints, and
local convex set constraints exist simultaneously.

2) Communication Networks: Communication networks
among players play a key role for designing and analysing
distributed GNE seeking algorithms. Many existing GNE
seeking algorithms with distributed methods are designed for
multi-cluster games and noncooperative games based on the
assumption of undirected graphs. However, directed graphs
have broader applications than that of undirected graphs in
noncooperative games and multi-cluster games. Furthermore,
it is noteworthy that an undirected-graph-based algorithm may
fail to converge under directed graphs. As a result, it is worth
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studying distributed GNE seeking algorithms under directed
graphs. [15] investigated two distributed variational algorithms
for GNE seeking of weight-balanced aggregative games with
differentiable and nonsmooth cost functions, respectively. [16]
proposed an NE seeking algorithm for weight-balanced ag-
gregative games with a heterogeneous second-order nonlinear
multi-agent system. [17] developed a NE seeking strategy with
discrete-time gradient-free algorithm for multi-cluster games
with inner-cluster digraphs. The adjacent matrices of the di-
graphs in these problems are doubly-stochastic. [18] designed
a NE seeking algorithm of strongly connected consistency-
constrained multi-cluster games. For multi-cluster games with
jointly connected switching digraphs, [19] proposed a dis-
tributed consensus-based NE seeking algorithm. [20] proposed
continuous-time GNE seeking algorithms for weight-balanced
and weight-unbalanced digraphs.

3) Nonsmooth Analysis: As a natural characteristic, nons-
moothness often arises in optimization and game problems in
real-world engineering areas. The subgradient-based algorithm
is inherently developed [21]–[25], whose convergence was
deduced according to the nonsmooth analysis. [22] proposed
a distributed hybrid algorithm for constrained nonsmooth op-
timization, including a continuous-time differential inclusion
mapping and a discrete-time jump set triggered mapping.
[23] developed a distributed subgradient-based GNE seeking
algorithm for nonsmooth set-constrained multi-cluster games
with additional coupled nonsmooth inequality constraints.
[25] investigated a dynamic average consensus-based GNE
seeking algorithm for nonsmooth coupled constrained and
heterogeneous local constrained aggregative games. Hoever,
since subgradients are non-continues, these algorithms may
face challenges in convergence analysis and may not be easily
applicable in real-world systems. As a comparison, distributed
Lipschitz algorithms based on the proximal operator have
been investigated [26]–[30], as it can be easily analysed with
the Lyapunov stability theory. In order to solve a class of
composite nonsmooth consensus optimization problems, [27]
investigated a distributed double proximal based primal-dual
algorithm. For solving nonsmooth consensus convex opti-
mizations with resource allocation constraints, [28] designed
distributed proximal-gradient algorithms with derivative feed-
back for second-order multi-agent systems. For nonsmooth
mixed-order multi-cluster games, [30] developed a distributed
proximal-gradient NE seeking algorithm.

B. Contribution
Motivated by the above challenges and limitation of the

previous works, a GNE seeking strategy for nonsmooth multi-
cluster games is investigated here. Each cluster consists of
several players. The inter-cluster graph is directed and weight-
unbalanced. Moreover, in contrast to previous works of multi-
cluster games, coupled nonsmooth inequality constraints, re-
source allocation constraint, and nonsmooth payoff functions
are considered in this multi-cluster game simultaneously. A
distributed proximal-based Lipschitz algorithm is designed for
this class of nonsmooth multi-cluster games with directed
inter-cluster graph and coupled nonsmooth inequality con-
straints. Contributions of this work are listed as below.

(i) This paper aims to solve a class of nonsmooth multi-
cluster games with inter-cluster directed graph and inner-
cluster coupled nonsmooth inequality constraints. In contrast
to [21]–[25], a distributed Lipschitz algorithm is designed for
nonsmooth multi-cluster games. Compared with [19], [26]–
[30], this paper considers inter-cluster weight-unbalanced di-
rected graphs and nonsmooth constraints for nonsmooth multi-
cluster games. As the result, a main difficulty of this problem
is to decouple these constraints and design the corresponding
algorithm in a fully distributed way simultaneously.

(ii) In this work, a distributed Lipschitz algorithm employ-
ing proximal operators is developed. A novel proximal split-
ting scheme is employed for making composite nonsmooth
Lagrangian functions proximable, and therefore guarantee
Lipschitz continuity of the proposed algorithm. This algorithm
can deal with the nonsmooth constraint coupled with the
Lagrangian variable.

(iii) In this work, the convergence analysis of the proposed
algorithm is conducted. By combining convex optimization
theory with Lyapunov stability theory to decouple nonsmooth
functions and Lagrangian multipliers, it offers a novel ap-
proach to analyse of nonsmooth multi-cluster games.

This paper is scheduled as the following parts. Section
II shows basic mathematical preliminaries for graph theory
and the proximal operator. In Section III, the distributed
nonsmooth multi-cluster game under inter-cluster directed
graph and nonsmooth inequality constraints is presented. In
Section IV, a distributed primal-dual Lipschitz algorithm with
a proximal splitting scheme is proposed. The convergence
analysis of this proposed algorithm is also deduced in Section
IV. In Section V, simulation results for a multi-cluster game
with sixteen players are provided to illustrate the effectiveness
of the proposed algorithm. Finally, Section VI presents the
conclusion and future extensions for this work.

II. MATHEMATICAL PRELIMINARIES

A. Graph Theory

Let G(V, E ,A) denote a weighted graph G, in which
V = {1, . . . , n} and E means the set of nodes and edges
respectively. The weighted adjacency matrix is denoted as
A = [aij ] ∈ Rn×n. An edge in a undirected graph is denoted
as eij ∈ E , which means that agents i and j can exchange
message from each other. eij ∈ E means that aij = aji > 0,
or aij = 0, and aii = 0, i ∈ I. Moreover, an edge eij ∈ E in a
directed graph G means that agent i can receive message from
agent j. eij ∈ E means that aij > 0, and aii = 0, i ∈ I. In
a directed graph, the in-degree of agent i can be represented
as dini =

∑n
j=1 aij , and the out-degree of agent i can be

represented as douti =
∑n
j=1 aji.

A neighbour of agent i being agent j can be shown as
j ∈ Ni. The set of real numbers is denoted as R. Ln denotes
a Laplacian matrix, where Ln = D−A. D ∈ Rn×n is diagonal
matrix, where for each i ∈ {1, . . . , n}, D(i),(i) =

∑n
j=1 aij .

The Kronecker product of Ln and Iq can be shown as L ,
Ln ⊗ Iq ∈ Rnq×nq , where Iq is the q-dimensional identity
matrix. The Euclidean norm of a vector a ∈ Rn is shown as
‖a‖. The l1 norm of a vector a ∈ Rn is shown as ‖a‖1. The set
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of positive real numbers is denoted as R+. The diagonal matrix
is denoted as diag{b1, · · · , bn} ∈ Rn×n. For this matrix, the
i-th diagonal element is represented like bi ∈ R for any i ∈
{1, · · · , n}. The n-dimensional null matrix is denoted as On.
The vector of zeros with n-dimension is denoted as 0n ∈ Rn.
(·)T denotes transpose of matrix.

For the zero eigenvalue of the Laplacian matrix Ln, the
corresponding left eigenvector is denoted as a positive vec-
tor h = (h1, h2, · · · , hn)T . For r ∈ R+, hTLn = 0Tn
and

∑n
i=1 hi = 1. Define H = diag(h1, h2, · · · , hn). If

the directed graph G is strongly connected, then the matrix
L = (HLn + LTnH)/2 is positive semidefinite. Furthermore,
it has only one zero eigenvalue.

B. Proximal Operator

For x ∈ Rr, if f(x) is a lower semi-continuous convex
function, then proxf [y] of f(x) associated with a point y ∈
Rr, which is called the proximal operator, can be denoted as

proxf [y] = arg min
x
{f(x) +

1

2
‖x− y‖2}. (1)

The subdifferential of f(x) can be denoted as ∂f(x). If f(x)
is convex, then ∂f(x) is monotone. For all x ∈ Rr, y ∈ Rr,
zx ∈ ∂f(x), and zy ∈ ∂f(y), there exists that (zx− zy)T (x−
y) ≥ 0. Moreover, the equation y = proxf [x] means that

y − x ∈ ∂f(x). (2)

III. PROBLEM STATEMENT

The nonsmooth multi-cluster game problem with inter-
cluster weight-unbalanced directed graph is formulated in this
section. Consider a group of n players N = {1, · · · , n}
involved in this game, which is divided into m clusters. In each
cluster j ∈ {1, · · · ,m}, nj players are contained to achieve
a consensus decision under a coupled nonsmooth inequality
constraint, and n =

∑m
j=1 nj . For the player i ∈ {1, · · · , nj}

in the cluster j ∈ {1, · · · ,m}, which is denoted as player
pi,j , the decision profile is denoted as xij ∈ Rq . The decision
profiles of cluster j are stacked as xj = col(x1

j , · · · , x
nj

j ) ∈
Rnjq . The leaders of the clusters will form an inter-cluster
network. In consideration of privacy and communication costs,
only the leader of each cluster knows the corresponding local
information of resource allocation constraint. Without loss of
generality, we designate the leader as player p1,j in each
cluster j. These m leaders discuss and decides their local GNE
seeking strategies in a inter-cluster network, which is modeled
as a weight-unbalanced directed graph G0. The inner-cluster
graph for the cluster j ∈ {1, · · · ,m} is denoted as a undirected
graph Gj . Decision profiles of all players except xj are de-
noted as x−j = [(x1)T , · · · , (xj−1)T , (xj+1)T , · · · , (xm)T ] ∈
R(n−nj)q . However, players in cluster j ∈ {1, · · · ,m} can
only receive informations of x−j from neighbour clusters
N G0j in G0. We define Sij(x−j) as the portion of deci-
sion profiles x−j received by player pi,j and Sj(x−j) =⋃nj

i=1 S
i
j(x−j). For the cluster j ∈ {1, · · · ,m}, the pay-

off function Fj(xj , x−j) is defined as Fj(xj , x−j) =
F 1
j (xj , x−j) +F 2

j (xj , x−j) =
∑nj

i=1 fj,i(x
i
j , S

i
j(x−j)), where

fj,i(x
i
j , S

i
j(x−j)) = f1

j,i(x
i
j , S

i
j(x−j))+f2

j,i(x
i
j , S

i
j(x−j)) and

F kj (xj , x−j) =
∑nj

i=1 f
k
j,i(x

i
j , S

i
j(x−j)) for k = 1, 2. There

are two convex functions f1
j,i, f

2
j,i : Rq × Rk → R for each

player i contained in its local payoff function, where f1
j,i is

smooth w.r.t xij , f
2
j,i is nonsmooth w.r.t xij . Additionally, k ∈ R

represents the dimension of Sij(x−j). For all decision profiles
and j ∈ {1, · · · ,m}, the feasibility set Ω is defined as

Ω = {x ∈ Rnq|
m∑
j=1

x1
j =

m∑
j=1

rj , Gj(xj) ≤ 0,

Lj,qxj = 0njq},
(3)

where rj ∈ Rq , Gj(xj) =
∑
i∈Nj

gij(x
i
j), Lj is the Laplacian

matrix of the graph Gj , and Lj,q = Lj ⊗ Iq ∈ Rnjq×njq . The
local inequality constraint gij(x

i
j) is nonsmooth and available

to the player pi,j . The feasibility set Ω is a convex and
closed set. For a given x−j , the goal of players in the cluster
j involved in this multi-cluster game is to minimize the
optimization problem

min Fj(xj , x−j)

s.t. (xj , x−j) ∈ Ω.
(4)

Remark 1: In problem (4), each cluster eventually sends
out a consensus decision through its leader. All clusters then
engage a noncooperative game to determine the final decision
within an inter-cluster graph. Moreover, in contrast to pre-
vious works, this multi-cluster game problem simultaneously
considers nonsmooth composite payoff functions, inner-cluster
nonsmooth coupled inequality, and inter-cluster directed graph.

According to [31], the definition of the GNE of multi-cluster
noncooperative game (4) is presented as follows.

Definition 1: Given a decision profile x∗. If

x∗j ∈ argmin
(x∗j ,x

∗
−j)∈Ω

Fj(x
∗
j , x
∗
−j) (5)

for players in all clusters j ∈ {1, · · · ,m}, then x∗ is a GNE
of the multi-cluster game (4).

According to [31] and [32], the following lemma is pro-
posed to show that the GNE seeking of problem (4) is
equivalent to solving a generalized variational inequality (GVI)
problem.

Lemma 1: Define D(x) = col(∂x1F1(x1, x−1),
· · · , ∂xmFm(xm, x−m)). Then a GNE of the multi-cluster
game (4) for players in all clusters j ∈ {1, · · · ,m} can be
obtained by solving the GVI:

Find x∗ ∈ Ω, 〈d∗, x− x∗〉 ≥ 0,∀x ∈ Ω, (6)

which means that −d∗ ∈ NΩ(x∗), d∗ ∈ D(x∗). NΩ(x∗) =
{x ∈ Ω|xTx∗ ≤ 0} is the normal cone of Ω at the point x∗.

Remark 2: For each cluster j ∈ {1, · · · ,m}, let the feasible
direction of the point xj in Ω be defined as Pj(xj) = {sj ∈
Rn|sj = yj − xj , yj ∈ Ω}. The decent direction of the
payoff function Fj(xj , x−j) at the point xj in Ω is defined
as Kj(xj) = {sj ∈ Rn|sTj dj < 0, dj ∈ Dj(xj)}, where
d = [d1, · · · , dm]. If x∗ is a solution of GVI (6), then x∗ ∈ Ω
and Pj(x

∗
j ) ∩ Kj(x

∗
j ) = ∅, i,e, every feasible direction of

x∗j is not a decent direction of Fj(xj , x−j) at the point x∗j
in Ω, which is the definition of the Nash equilibrium of the
multi-cluster game problem investigated in our paper.
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Assumptions for the well-posedness of the problem (4) are
proposed as follows.

Assumption 1:

(1) The payoff function f1
j,i is strongly convex and twice

continuously differentiable w.r.t. xij for a given x−j ,
which means that there exists a constant K1 >
0 for player i such that, (∇xi

j
f1
j,i(y, S

i
j(x−j)) −

∇xi
j
f1
j,i(z, S

i
j(x−j)))

T (y − z) ≥ K1‖v1 − v2‖2, where
y ∈ Rq , z ∈ Rq , and y 6= z for i ∈ {1, · · · , nj},
j ∈ {1, · · · ,m}. D(x) is monotone.

(2) Proper closed functions f2
j,i and gij are lower semi-

continuous and convex. Their proximal operators can be
computed easily for i ∈ {1, · · · , nj}, j ∈ {1, · · · ,m}.
Furthermore, gij is Lipschitz continuous with Ki

2,j , K2 =
maxi∈{1,··· ,nj},j∈{1,··· ,m}[K

i
2,j ], and K2 > 0.

(3) The inter-cluster graph G0 is directed, strongly connected,
and weight-unbalanced. The inner-cluster graph Gj is
undirected and connected for all j ∈ {1, · · · ,m}.

(4) There exists at least one feasible point to satisfy the
Slater’s condition of problem (4).

Moreover, the following lemma presents the KKT condition
for the solution of GVI (6), which is also a GNE of problem
(4) according to Lemma 1.

Lemma 2: If Assumption 1 holds, then x∗ ∈ Rnq can be
a GNE of the problem (4) if α1 ∈ R+, α2 ∈ R, α3 ∈ R,
µj ∈ Rnjq , v0 ∈ Rq , v∗j ∈ Rnjq , and ω∗ ∈ Rmq exist to
satisfy that


0njq ∈ α1∇xjF

1
j (x∗j , x

∗
−j) + α1∂xjF

2
j (x∗j , x

∗
−j)

+α2∂xj (ω∗j gj(x
∗
j )) + α3Ljµ

∗
j − v∗j ,

Ljx∗j = 0njq, Gj(x
∗
j ) ≤ 0, (ω∗)T g(x∗) = 0,

Ljω
∗
j = 0nj

,
∑m
j=1 x

1∗
j =

∑m
j=1 rj , v

1∗
j = v0,

(7)

where j ∈ {1, · · · ,m}, x1∗ = [x1∗
1 , · · · , x1∗

m ]T ∈ Rmq ,
g(x∗j ) = [g1

j (x1∗
j ), · · · , gnj

j (x
nj∗
j )]T ∈ Rnj , g(x∗) =

[g1(x∗1), g2(x∗2), · · · , gm(x∗m)]T ∈ Rn, and vi∗j = 0 for i 6= 1.

The proof of Lemma 2 can be deduce straightforwardly.

IV. GNE SEEKING ALGORITHM DESIGN

A distributed Lipschitz-continuous GNE seeking algorithm
is proposed in this section for the directed nonsmooth multi-
cluster game (4). The proposed algorithm is designed with the

following mechanism:

ẋij =proxα1f2
i,j

[
xij − α1∇xi

j
f1
i,j(x

i
j , S

i
j(x−j))

− α3

∑
k∈N

Gj
i

aji,k(µij − µij)− α3

∑
k∈N

Gj
i

aji,k(xij − xkj )

+ α4y
i
j + v̄ij

]
− xij ,

ẏij =proxα2ωi
jg

i
j

[
xij − α4y

i
j

]
− xij ,

ω̇ij =PR̄+
[ωij + α2g

i
j(x

i
j + ẏij)− α6

∑
k∈N

Gj
i

aji,k(ωij − ωkj )

− α6

∑
k∈N

Gj
i

aji,k(ξij − ξkj )]− ωij ,

µ̇ij =α3

∑
k∈N

Gj
i

aji,k(xij − xkj ), ξ̇ij = α6

∑
k∈N

Gj
i

aji,k(ωij − ωkj ),

v̇j =− 1

hj
(x1
j + ẋ1

j − rj)− α5

∑
l∈NG0j

a0
j,l(vj − vl)− ηj ,

η̇j =α5

∑
l∈NG0j

a0
j,l(vj − vl), ηj(0) = 0q,

ω̇j =PR̄+
[ωj + α2gj(x

1
j + ẏj)]− ωj ,

(8)

where v̄1
j = vj and v̄ij = 0q for i 6= 1.

A compact form of the algorithm (8) is presented as follows.

ẋ =Proxα1F 2

[
x− α1∇F 1(x)− α3Ln,qµ

− α3Ln,qx+ α4y + v̄
]
− x,

ẏ =Proxα2ωT g[x− α4y]− x,
ω̇ =PR̄n

+
[ω + α2g(x+ ẏ)− α6Lω − α6Lξ]− ω,

µ̇ =α3Ln,qx, ξ̇ = α6Lω,
v̇ =−H−1(x1 + ẋ1 − r)− α5L0v − η,
η̇ =α5L0v, η(0) = 0mq,

(9)

where ∇xj
F kj (xj , x−j) = col(∇x1

j
fk1,j(x

1
j , S

1
j (x−j)), · · · ,

∇
x
nj
j
fknj ,j

(x
nj

j , S
nj

j (x−j))), ∇F 1(x) = col(∇x1
F 1

1(x1, x−1),

· · · ,∇xm
F 1
m(xm, x−m)), ∂F 2(x) = col(∂x1

F 2
1(x1, x−1), · · · ,

∂xm
F 2
m(xm, x−m)), x = col(x1, · · · , xm) ∈ Rnq , x1 =

col(x1
1, · · · , x1

m) ∈ Rmq , µ = col(µ1, · · · , µm) ∈ Rnq , µ =
col(µ1, · · · , µm) ∈ Rnq , v = col(v1, · · · , vm) ∈ Rmq , v̄ =
col(v̄1, · · · , v̄m) ∈ Rnq , yj = col(y1

j , · · · , y
nj

j ) ∈ Rnjq , y =

col(y1, · · · , ym) ∈ Rnq , ωj = col(ω1
j , · · · , ω

nj

j ) ∈ Rnj , ω =

col(ω1, · · · , ωm) ∈ Rn, ξj = col(ξ1
j , · · · , ξ

nj

j ) ∈ Rnj , ξ =
col(ξ1, · · · , ξm) ∈ Rn, g(x) = col(g1(x1), · · · , gm(xm)) ∈
Rn, r = col(r1, · · · , rm) ∈ Rmq , η = col(η1, · · · , ηm) ∈
Rmq , H−1 = diag(1/h1, · · · , 1/hm) ∈ Rm×m, r =
col(r1, · · · , rn) ∈ Rmq , L = diag(L1, · · · , Lm), and Ln,q =
L⊗ Iq .

Remark 3: The motivation of the design of algorithm (9) is
to seek the saddle-point of the modified Lagrangian function
as

L(x, ω, µ, v) = F (x)+ωT g(x)+µTLn,qx−vT(x− r). (10)

The auxiliary variable y and the parameter α4 are presented
in algorithm (9) to separate 0njq ∈ α1∇xj

F 1
j (x∗j , x

∗
−j) +
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α1∂xj
F 2
j (x∗j , x

∗
−j) +α2∂xj

(ω∗j gj(x
∗
j )) + α3Ljµ

∗
j − v∗j in (7)

to two part as

α1∇xjF
1
j (x∗j , x

∗
−j) + α4y

∗
j + α3Ljµ

∗
j

− v∗j ∈ −α1∂xj
F 2
j (x∗j , x

∗
−j),

(11)

and

α4y
∗
j ∈ −α2∂xj (ω∗j gj(x

∗
j )), (12)

where Proxα1F 2 [·] and Proxα2ωT g[·] w.r.t. x are designed
to fulfil the requirements of (11) and (12). For minimizing
the Lagrangian function in the x-direction, the first equation
in algorithm (9) is derived with the proximal operator of
α1F

2(x), and the second equation in algorithm (9) is derived
with the proximal operator of α2ω

T g. For maximizing the
Lagrangian function in the ω-direction, µ-direction, and v-
direction, the third equation, fourth equation, and fifth equation
in algorithm (9) are derived respectively.

V. CONVERGENCE RESULT

The convergence result of algorithm (9) is deduced in this
section. First, the relationship between the equilibrium of
algorithm (9) and the solution of problem (4) can be presented
as the following Lemma 3.

Lemma 3: Under Assumption 1, if (x∗, y∗, ω∗, µ∗, ξ∗, v∗,
η∗) is an equilibrium of algorithm (9), then x∗ can be an GNE
for the game (4).

Proof: Suppose (x∗, y∗, ω∗, µ∗, ξ∗, v∗, η∗) is an equi-
librium of algorithm (9). Combining (2) and algorithm (9), it
shows that:

x∗−α1∇F 1(x∗)−α3Lµ∗+α4y
∗ + v̄∗ ∈ α1∂F

2(x∗), (13a)

− α4y
∗ ∈ α2∂x((ω∗)T g(x∗)), (13b)

PR̄n
+

[ω∗ + α2g(x∗)− α6Lξ∗] = ω∗, ω∗ ≥ 0n (13c)

−H−1(x∗ − r)− α5L0v
∗ − η∗ = 0nq, (13d)

L0v
∗ = 0mq,Ln,qx∗ = 0nq,Lω∗ = 0n, (13e)

which means that 0nq ∈ x∗ − α1∇F 1(x∗) − α1∂F
2(x∗) −

α3Lµ∗ − α3Lx∗ + α4ȳ
∗ + v̄∗.

Considering (13c), if ω∗ = 0n, there exists that α2g(x∗)−
α6Lξ∗ ≤ 0m, which means that G(x∗) < 0; if ω∗ > 0m,
it follows that α2g(x∗) − α6Lξ∗ = 0m, which means that
G(x∗) = 0. Hence, from the above, G(x∗) ≤ 0 and
(ω∗)T [g(x∗)] = 0. From (13d) and (13e), it yields that
−H−1(x∗ − r) − α5L0v

∗ − η∗ = 0nq . Remember that
ηj(0) = 0q , which means that

∑m
j=1 hj η̇j = α51THL0v = 0q

and
∑m
j=1 hjηj =

∑m
j=1 hjηj(0) = 0q . Then, it holds that∑n

i=1(x1∗
j − rj) = −

∑m
j=1 hjη

∗
j = 0q . According to Lemma

2, x∗ is a GNE of problem (4). �
Then the following Lemma regarding the relation between

the Lagrangian multiplier ω, the nonsmooth function g(x),
and the decision profile x is presented. This lemma is derive
according to the game (4) and algorithm (9), which is an
extension of Theorem 3.1 in [23] for the problem (4) using
algorithm (9).

Lemma 4: Under Assumption 1, if (x∗, y∗, ω∗, µ∗, ξ∗, v∗,
η∗) is an equilibrium of (9), then it holds that

[∂x(ωT g(x+ ẏ))− ∂x((ω∗)T g(x∗))]T (x̂∗ + ẏ)

−(g(x+ ẏ)− g(x∗))T ω̂∗ ≥ 0,
(14)

where ω̂∗ = ω − ω∗ and x̂∗ = x− x∗.
The Lyapunov candidate is designed as V (x, y, ω, µ, ξ,

v, η) = V1(x, y) + V2(x, µ, ω, ξ) + V3(v, η), and it can be
expressed as

V1(x, y)=
ζ+1

2

[
‖x̂∗‖2 + α4(‖ŷ∗‖2 − 2(x̂∗)T ŷ∗)

+2α1[F 1(x)−F 1(x∗)−(x̂∗)T∇F 1(x∗)]
]
,

V2(x, µ, ω, ξ)=
ζ+1

2

[
‖µ̂∗‖2 + α3x

TLx+ 2α3xLµ̂∗

+‖ω̂∗‖2+‖ξ̂∗‖2+α6ω
TLω+2α6ωLξ̂

]
,

V3(v, η)=
1

2
[ζ(v̂∗)THv̂∗+(v̂∗+η̂∗)TH(v̂∗ + η̂∗)],

(15)

where α6 > 0, ŷ∗ = y − y∗, µ̂∗ = µ − µ∗, ξ̂∗ = ξ − ξ∗,
v̂∗ = v − v∗, and η̂∗ = η − η∗.

Theorem 1: Consider Assumption (1) and algorithm (9).
If ζ > 1

h∗ − 1, α1 > 2
K1

, 0 < α2 < min[ 1
(K2)2 , 2], 0 <

α3 < 1/(nmax + 1), 0 < α4 < 1 −max[α2(K2)2, α3nmax],
α5 > (ζ+1)2

ζλmin(L̂0)
, and 0 < α6 < 1

nmax
, where nmax =

maxj∈{1,··· ,m}[mj ], then
(1) V (x, y, ω, µ, ξ, v, η) ≥ 0. V (x, y, ω, µ, ξ, v, η) = 0 iff

(x, y, ω, µ, ξ, v, η) = (x∗, y∗, ω∗, µ∗, ξ∗, v∗, η∗).
(2) The trajectory (x, y, ω, µ, ξ, v, η) is bounded. Further-

more, x converges to the GNE of game (4) as t→∞.
Proof: (1) It is trivial to obtain that

V (x∗, y∗, ω∗, µ∗, ξ∗, v∗, η∗) = 0. The following statement
is about to proof that V (x, y, ω, µ, ξ, v, η) > 0 when
(x, y, ω, µ, ξ, v, η) 6= (x∗, y∗, ω∗, µ∗, ξ∗, v∗, η∗). Combining
α6 and (15), we have

V2(x, µ, ω, ξ)

≥ζ+1

2

[
‖µ̂∗‖2+2α3xLµ̂∗+‖ω̂∗‖2 + ‖ξ̂∗‖2 + 2α6ωLξ̂

]
≥ζ+1

2

[
(1− α3λmax(L))‖µ̂∗‖2 − α3λmax(L))‖x̂∗‖2

]
.

(16)

Since F 1(x) is a strongly convex function, there exists that
F 1(x)− F 1(x∗)− (x̂∗)T∇F 1(x∗) ≥ 0. It can be also easily
to show that V3(v, η) ≥ 0. Recalling 0 < α3 < 1

nmax+1 ,
λmax(Ln,q) ≤ nmax, 0 < α4 < 1−max[α2(K2)2, α3nmax],
and (16) with (15), it yields that

V (x, y, ω, µ, ξ, v, η)

≥ζ+1

2

[
‖x̂∗‖2 + α4(‖ŷ∗‖2 − 2(x̂∗)T ŷ∗)

− α3λmax(L)‖x̂∗‖2
]

≥ζ+1

2

[
κ1‖x̂∗‖2 + α4(‖ŷ∗‖2 − 2(x̂∗)T ŷ∗)

]
≥ζ+1

2

[
κ1

[
‖x̂∗ − κ2ŷ

∗‖2 + κ2(1− κ2)‖ŷ∗‖2
]

≥0,

(17)

where κ1 = 1 − α3λmax(L) ≥ 1 − nmax

nmax+1 > 0 and
κ2 = α4/κ1 > 0. Therefore, V (x, y, ω, µ, ξ, v, η) is positive
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definite, radially unbounded, V (x, y, ω, µ, ξ, v, η) ≥ 0 and is
zero iff (x, y, ω, µ, ξ, v, η) = (x∗, y∗, ω∗, µ∗, ξ∗, v∗, η∗).

(2) Here it is proved that V̇ (t) ≤ 0 for any t ≥ 0. From
(9), it is shown that

x+ ẋ =Proxα1F 2 [x− α1∇F 1(x)− α3Ln,qµ
− α3Ln,qx+ α4y + v̄], (18a)

x∗ =Proxα1F 2 [x∗ − α1∇F 1(x∗)− α3Ln,qµ∗

+ α4y
∗ + v̄∗], (18b)

x+ ẏ =Proxα2ωT g[x− α4y], (18c)
x∗ =Proxα4(ω∗)T g[x

∗ − α4y
∗], (18d)

ω + ω̇ =PR̄n
+

[ω + α2g(x+ ẏ)− α6Lω − α6Lξ], (18e)

ω∗ =PR̄n
+

[ω∗ + α2g(x∗)− α6Lξ∗]. (18f)

According to (18a) and (18b), we can have that

− α1∇F 1(x)− α3Ln,qµ− α3Ln,qx
+ α4y + v̄ − ẋ ∈ α1∂F

2(x+ ẋ),
(19)

with

− α1∇F 1(x∗)− α3Ln,qµ∗

+ α4ȳ
∗ + v̄∗ ∈ α1∂F

2(x∗).
(20)

Similarly, from (18c) and (18d), it yields that

−α4y − ẏ ∈ α2∂x(ωT g(x)),

−α4y
∗ ∈ α2∂x((ω∗)T g(x∗)).

(21)

Moreover, (18e) and (18f) imply that

(ω̂+ω̇)T
[
α2g(x+ẏ)−α2g(x∗)−α6L(ω̂∗+ξ̂∗)−ω̇

]
≥0. (22)

Since the subdifferential ∂F 2(x) is monotone caused by the
convexity of F 2(x), it can be shown from (2), (19), and (20)
that [

− α1∇F 1(x̂∗)− α3Ln,qx̂∗ − α3Ln,qµ̂∗

+ α4ŷ
∗ + ˆ̄v∗ − ẋ

]T
(x̂∗ + ẋ) ≥ 0,

(23)

where ∇F 1(x̂∗) = ∇F 1(x)−∇F 1(x∗) and ˆ̄v∗ = v̄ − v̄∗.
From (23), it can be derived that

(x̂∗)T ẋ+ α1ẋ
T∇F 1(x̂∗) + α3ẋ

TLn,qx̂∗

+ α3(µ̂∗)TLn,qx̂∗ + α3ẋ
TLn,qµ̂∗ − α4(ŷ∗)T ẋ

≤− ‖ẋ‖2 − α3(x̂∗)TLn,qx̂− α1(x̂∗)T∇F 1(x̂∗)

+ (x̂∗ + ẋ)T ˆ̄v∗ + α4(ŷ∗)T x̂∗.

(24)

Combining Lemma 4 and (21), it yields that

(−α4ŷ
∗−ẏ)T (x̂∗+ẏ)−α2(ω̂∗)T (g(x+ẏ)−g(x∗))≥0, (25)

which means that

α4(ŷ∗)T ẏ ≤− (x̂∗)T ẏ − α1(ω̂∗)T (g(x+ ẏ)− g(x∗))

− ‖ẏ‖2 − α4(ŷ∗)T x̂∗.
(26)

According to (22), it follows that

(ω̂∗)T ω̇ + α6(ξ̂∗)TLω̂∗ + α6ω̇
TLω̂∗ + α6ω̇

TLξ̂∗

≤(ω̂∗+ω̇)T[α2(g(x+ẏ)−g(x∗))]−‖ω̇‖2−α6(ω̂∗)TLω̂∗.
(27)

Considering (24), (26), and (27) together with (15), it can
be presented that

V̇ (x, y, ω, µ, ξ, v, η)

=(ζ+1)
[
(x̂∗)T ẋ+α4(ŷ∗)T ẏ−α4(x̂∗)T ẏ−α4(ŷ∗)T ẋ

+ α1ẋ
T∇F 1(x̂∗)

]
+ (ζ + 1)

[
α3ẋ

TLn,q(x̂∗ + µ̂∗)

+ (µ̂∗)T µ̇+ (ω̂∗)T ω̇+(ξ̂∗)T ξ̇+α6ω̇
TLω̂∗+α6ω̇Lξ̂∗

]
+ (ζ+1)

[
(α3)2(x̂∗)T(Ln,q)2x̂∗+(α6)2(ω̂∗)T(L)2ω̂∗

]
+
[
ζ(v̂∗)THv̇ + (v̂∗ + η̂∗)TH(v̇ + η̇)

]
=(ζ+1)

[
(x̂∗)Tẋ+α4(ŷ∗)Tẏ−α4(ŷ∗)Tẋ+α1ẋ

T∇F 1(x̂∗)

+ α3ẋ
TLn,qx̂∗ + α3(µ̂∗)TLn,qx̂∗ + α3ẋ

TLn,qµ̂∗
]

+(ζ+1)
[
(ω̂∗)T ω̇+α6(ξ̂∗)TLω̂∗+α6ω̇

TL(ω̂∗+ξ̂∗)
]

+(ζ+1)
[
(α3)2(x̂∗)T (Ln,q)2x̂∗+(α6)2(ω̂∗)T(L)2ω̂∗

−α4(x̂∗)T ẏ
]
+
[
ζ(v̂∗)THv̇+(v̂∗+η̂∗)TH(v̇+η̇)

]
≤−(ζ + 1)

[
‖ẋ‖2+‖ẏ‖2+α1(x̂∗)T∇F 1(x̂∗)+‖ω̇‖2

]
−α5ζ(v̂∗)T L̂0v̂

∗−(η̂∗)THη̂∗−(ẋ1)T η∗−(x̂1∗)T η̂∗

− (ζ + 1)
[
(v̂∗)THη̂∗ + (α4 + 1)(x̂∗)T ẏ

− α2ω̇
T (g(x1 + ẏ)− g(x1∗))

]
,

(28)

where L̂0 = 1
2 (HL0+L0H), and (x̂∗)T∇F 1(x̂∗) ≥ K1‖x̂∗‖2

according to Assumption 1.
Define v = va + vb, where va is the vector of ones, and vb

is not. Then (v̂∗)THη̂∗ = (vb)THη̂∗, since (va)THη̂∗ = 0
caused of 1TmHη̇ = 0. Note that (x̂∗)T ẏ ≤ 1

2‖x̂
∗‖2 + 1

2‖ẏ‖
2,

(ζ+ 1)(vb)THη̂∗ ≤ (ζ+ 1)2‖vb‖2 + 1
4 (η̂∗)THη̂∗, (ẋ1)T η̂∗ ≤

1
h∗ ‖ẋ‖

2 + 1
4 (η̂∗)THη̂∗, (x̂1∗)T η̂∗ ≤ 1

h∗ ‖x̂
∗‖2 + 1

4 (η̂∗)THη̂∗,
and ω̇T (g(x + ẏ) − g(x)) ≤ 1

2‖ω̇‖
2 + 1

2K
2
2‖ẏ‖2. Hence

according to assumptions of αk for k ∈ {1, · · · , 5}, it is
derived from (28) that

V̇ (x, y, ω, µ, ξ, v, η)

≤− (ζ+1)
[
‖ẋ‖2 + ‖ẏ‖2 + α1K1‖x̂∗‖2 + ‖ω̇‖2

]
− α5ζ(v̂∗)T L̂0v̂

∗ − 1

4
(η̂∗)THη̂∗ +

1

h∗
‖ẋ‖2

+ (ζ+1)2‖vb‖2 − (ζ + 1)
[
(α4 + 1)(x̂∗)T ẏ

− α2ω̇
T (g(x1 + ẏ)− g(x1∗))

]
+

1

h∗
‖x̂∗‖2

≤− ε1‖ẋ‖2 − ε2‖ω̇‖2 − ε3‖vb‖2 − ε4‖ẏ‖2

− ε5‖x̂∗‖2 −
1

4
(η̂∗)THη̂∗

≤0,

(29)

where ε1 = ζ + 1 − 1
h∗ , ε2 = (ζ + 1)(1 − 1

2α2),
ε3 = α5ζλmin(L̂0) − (ζ + 1)2, ε4 = 1

2 (ζ + 1)(1 − α4 −
α2(K2)2), and ε5 = 1

2 (ζ + 1)(2α1K1 − α4 − 1)− 1
h∗ . Since

V (x, y, ω, µ, ξ, v, η) is positive-definite, radially unbounded,
lower bounded, (x∗, y∗, ω∗, µ∗, ξ∗, v∗, η∗) is Lyapunov stable
and the trajectory (x, y, ω, µ, ξ, v, η) is bounded.

Define a set as T = {(x, y, ω, µ, ξ, v, η) :
V̇ (x, y, ω, µ, ξ, v, η) = 0}, which implies that T ⊆ {(x, y, ω,
µ, ξ, v, η) : ẋ = 0nq, ẏ = 0nq, ω̇ = 0n, vb = 0mq, x =
x∗, η = η∗}. Suppose D is the largest invariant set of
T . According to the invariance principle, the trajectory
(x, y, ω, µ, ξ, v, η) steered by algorithm (9) converges to
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D for t → ∞. If (x, y, ω, µ, ξ, v, η) is a trajectory of
algorithm (9) starting from (x0, y0, ω0, µ0, ξ0, v0, η0) ∈ D,
(x, y, ω, µ, ξ, v, η) ⊂ D for all t ≥ 0. Hence ẋ = 0nq and
ω̇ = 0nq , which means that µ̇ ≡ α3Ln,qx0 ≡ P1 ∈ Rnq
and ζ̇ ≡ α6Lω0 ≡ P2 ∈ Rn. If P1 6≡ 0nq and P2 6≡ 0n,
µ and ζ will not stay as constants, which contradicts the
invariance principle. Furthermore, with x ≡ x∗, η ≡ η∗,
and vb ≡ 0mq , it is deduced that η̇ ≡ α5L0v ≡ 0mq
and v̇ ≡ −(x1∗ − r) − η∗ ≡ 0mq according to the proof
of Lemma 3. Therefore, D ⊆ {(x, y, ω, µ, ξ, v, η) : ẋ =
0nq, µ̇ = 0nq, ẏ = 0nq, ω̇ = 0n, ξ̇ = 0n, v̇ = 0mq, η̇ = 0mq}.
According to Lemma 2 in [27], the limitation of trajectory
(x, y, ω, µ, ξ, v, η) is an equilibrium point to (9). The
according to Lemma 3, x converges to the GNE of game (4)
as t→∞.

Remark 4: Parameters α1 to α6 in Theorem 1 are provided
as sufficient conditions for guaranteeing the convergence of
algorithm (9), as deduced of Theorem 1. Parameters h and
λmin(L̂0) have been adopted in the design of algorithm
(9) with the inter-cluster directed unbalanced graph. Before
executing the algorithm (9), some distributed algorithms in
[33], [34] can be introduced to estimate these parameters. �

VI. SIMULATION RESULTS

In this section, we investigate some simulation results to
validate the proposed algorithm (9). Consider a distributed
multi-agent game with sixteen first-order agents forming four
clusters. The local optimization problem of the j-th cluster is
defined as follows:

min
xj∈R2nj

Fj(xj , x−j),

s.t. Gj(xj) ≤ 0, Lj,2xj = 02nj
.

(30)

The feasibility set of decision profiles is given as

Ω = {x ∈ R2n|
4∑
j=1

x1
j =

4∑
j=1

rj , Gj(xj) ≤ 0,

Lj,2xj = 02nj ,∀j ∈ {1, · · · , 4}},

(31)

where n = 16, n1 = 4, n2 = 3, n3 = 5, n4 = 4,
xij = [(xij)

1, (xij)
2]T ∈ R2, i ∈ {1, · · · , nj}, Fj(xj , x−j) =∑nj

i=1 fi,j(x
i
j , S

i
j(x−j)), Gj(xj) =

∑nj

i=1 g
i
j(x

i
j), r =

col(r1, r2, r3, r4) = [−3, 1, 5, 3, 2,−3,−2,−4]T ,
∑4
j=1 rj =

[2,−3]T , j ∈ {1, 2, 3, 4}. The local payoff function fi(xi)
and local nonsmooth inequality constraint gij(x

i
j) for agent

i ∈ {1, · · · , nj} in the cluster j are defined as

f1
i,j(x

i
j , S

i
j(x−j)) =

2‖x1
j−p1

j‖2+
∑

k∈N j
0

(x1
j )
Tx1
k, if i = 1,

2‖xij−pij‖2, otherwise,

f2
i,j(x

i
j , S

i
j(x−j)) =

{
0, if xij ∈ Ωij
∞, if xij /∈ Ωij

,

gij(x
i
j) = ‖xij − qij‖1 − cij ,

(32)
where k ∈ {1, · · · , 16}, pij = [k− 8, k− 8]T , qij = [−0.5, k−
10]T , c = col(c11, · · · , c44) = [26.1, 25.5, 26.1, 24.5, 24.2,
25.9, 26.5, 27.5, 24.1, 25.1, 27.1, 26.4, 0.8, 20.3, 20.7, 20.8]T ,
and Ωij = {δ ∈ R2|‖δ − xij(0)‖2 ≤ 49}. For each agent i

1

8

4
2

3

15

10
16

7

6

5

13

9

11

12

14

Fig. 1. The whole communication topology of the multi-agent system

within the cluster j, f0
i (xi), f1

i (xi) and gi(xi) represents the
quadratic cost function, the indicator function of xij ∈ Ωij , and
the l1 penalty for an anchor qij , respectively.

The communication topology G of the multi-agent sys-
tem, combined by the inter-cluster graph and inner-cluster
graphs involved in problem (4), is shown in Fig.1. There
are four clusters in this game, which are formulated as
J1 = {1, 2, 3, 4}, J2 = {5, 6, 7}, J3 = {8, 9, 10, 11, 12},
and J4 = {13, 14, 15, 16}. The leaders of four clusters are
agent 1, agent 5, agent 8, and agent 13, respectively. The
blue dashed lines denote edges of inner-cluster undirected
graphs, while the orange solid lines denote edges of the inter-
cluster directed graph. The initial positions of the agents in
clusters {J1, J2, J3, J4} can be randomly located within areas
R1 = {δ ∈ R2|‖δ − [−9, 6.5]T ‖2 ≤ 32}, R2 = {δ ∈ R2|‖δ −
[4, 6]T ‖2 ≤ 18}, R3 = {δ ∈ R2|‖δ− [5,−5.5]T ‖2 ≤ 32}, and
R4 = {δ ∈ R2|‖δ − [−7,−4.5]T ‖2 ≤ 20}, respectively. The
initial values of Lagrangian multipliers µ, v, ω, and auxiliary
variables y, η are set to zeros.

The final iteration step is 3000. The running time step size
is 0.1 s. The real running time is 330.7 s. The error of the
sequence x(k) is defined as ER(k) = ‖x(k)− x(k − 1)‖ for
k ∈ {1, · · · , 3000}. The final error is ER(3000) = 0.0010.
Motions of multi-agent system with algorithm (9) are pre-
sented in Fig.2, showing that players in the same cluster
achieve consensus. Fig.3 gives trajectories of

∑4
j=1(x1

j )
k(t)

for k ∈ {1, 2}, j ∈ {1, 2, 3, 4}, indicating that the inter-
cluster resource allocation constraint is satisfied. Fig.4 presents
trajectories of Gj(xj(t)) for j ∈ {1, 2, 3, 4}, showing that
the coupled nonsmooth inequality constraints for clusters
are satisfied. From Fig.2-Fig.4, it is evident that all agents
achieve the GNE of this multi-cluster game, minimizing the
global payoff function and satisfying nonsmooth inequality
constraints and the resource allocation constraint.

As a comparative result, a distributed nonsmooth algorithm,
which directly employs the subgradients of nonsmooth func-
tions like classic nonsmooth algorithms [21]–[23] does, is
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Fig. 2. Trajectories of xi
j(t) with i ∈ {1, · · · , nj}, j ∈ {1, 2, 3, 4} under

algorithm (9)
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Fig. 3. Trajectories of
∑4

j=1(x
1
j )

k(t) with k ∈ {1, 2}, j ∈ {1, 2, 3, 4}
under algorithm (9)

introduced as follows:

ẋ ∈PΩ

[
x− α1∇F 1(x)− ωT∂g(x)− α3Ln,qµ

− α3Ln,qx+ v̄
]
− x,

ω̇ =PR̄n
+

[ω + α2g(x)− α6Lω − α6Lξ]− ω,

µ̇ =α3Ln,qx, ξ̇ = α6Lω,
v̇ =−H−1(x1 + ẋ1 − r)− α5L0v − η,
η̇ =α5L0v, η(0) = 0mq.

(33)

The final iteration step is 3000. The running time step size
is 0.1 s. The real running time is 355.7 s. The final error
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Fig. 4. Trajectories of Gj(xj(t)) with j ∈ {1, 2, 3, 4} under algorithm (9)
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Fig. 5. Trajectories of xi
j(t) with i ∈ {1, · · · , nj}, j ∈ {1, 2, 3, 4} under

algorithm (33)

is ER(3000) = 0.0010. The trajectories of x steered by
algorithm (33) are presented in Fig.5. From Fig. 5, we can
observe that the trajectory of x13 has vibrations from 0s to
10s, which should be avoided in the distributed GNE seeking
process implemented by physical systems.

VII. CONCLUSION

A GNE seeking strategy for a class of nonsmooth con-
strained multi-cluster noncooperative games is investigated in
this paper. Each player in this game deals with two nonsmooth
functions: a nonsmooth payoff function and a nonsmooth
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function in the coupled inequality constraint, respectively.
Players in the same cluster should cooperate to satisfy a
nonsmooth coupled inequality constraint. A distributed GNE
seeking algorithm is presented under the directed inter-cluster
graph. Two proximal operators are involved in this algorithm
to tackle these two nonsmooth functions mentioned above
separately. In the future work, the switching directed graph, the
order of proximal operators, and nonconvex payoff functions
will be considered in nonsmooth multi-cluster games.
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