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Abstract: A distributed nonsmooth robust resource allocation problem with cardinality constrained uncertainty is investigated
in this paper. The global objective is consisted of local objectives, which are convex but nonsmooth. Each agent is constrained
in its private convex set and has only the information of its corresponding local objective. The resource allocation condition is
subject to the cardinality constrained uncertainty sets. By employing the duality theory of convex optimization, a dual problem of
the robust resource allocation problem is presented. For solving this dual problem, a distributed primal-dual projected algorithm
is proposed. Theoretically, the convergence analysis by using stability theory of differential inclusions is conducted. It shows
that the algorithm can steer the multi-agent system to satisfy resource allocation condition at the optimal solution. In the end, a
nontrivial simulation is shown and the results demonstrate the efficiency of the proposed algorithm.
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1 Introduction

In recent years, the distributed optimization problem is
widely studied as a hot topic in the areas of machine learn-
ing [1] and multi-agent system coordination [2]-[3]. In this
problem, the objective is the sum of local objectives. Each
agent can only obtain the knowledge of its private local ob-
jective. Many results of distributed optimization are focus-
ing on steering the system to achieve consensus at the opti-
mal solution [4]-[5]. On the other hand, the research of dis-
tributed globally constrained optimization has also gained a
great of attention [6]-[7], especially the distributed resource
allocation problem. In order to solve the distributed resource
allocation problem, a distributed gradient-based algorithm
was proposed while the initialization of states is required [8].
After this work, the initialization-free distributed algorithms
for distributed resource allocation have been investigated in
[9]-[10].

While most of the existing works about distributed re-
source allocation have the assumption that the resource allo-
cation condition is deterministic. This assumption may not
applied for the distributed resource allocation problems ap-
plying in the real world. In order to solve these problems,
robustness of the distributed resource allocation should be
stressed. Robust optimization deals with uncertainty de-
scribed by uncertain-but-bounded parameters [11]. Typi-
cally, there are several kinds of uncertain parameters (eg.,
box/interval uncertainty, ellipsoidal uncertainty, polyhedral
uncertainty, cardinality constrained uncertainty, etc.) [12].
Zeng et al. [6] proposed a distributed algorithm for robust
resource allocation with polyhedral uncertain parameters.
However, only considering polyhedral uncertain parameters
may lead the problem too much conservative [13]. Cardinal-
ity constrained uncertainty provides a budget of uncertainty
in terms of cardinality constraints which decrease the con-
servatism by combining interval and polyhedral uncertainty.
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Besides, many real-world robust optimization problems are
related with cardinality constrained uncertainty [14]. There-
fore, the robust optimization problem with cardinality con-
strained uncertainty needs to be analysed.

Nonsmooth optimization problem is increasingly popular
due to its important role in a lot of signal processing, statis-
tical inference and machine learning problems. In the com-
pressed sensing problem, the sparsity-promoting regulator
has the form of /;-norm. In optimization problems with per-
agent constraints, the indicator function of the constraint set
of agent ¢ is nonsmooth. In the geometric median problem,
the objective is the mean of a sum of /5-norm functions.

In this paper, a distributed robust nonsmooth resource al-
location problem with cardinality constrained uncertainty
has been researched. The contributions of this paper are
summed up as three parts:

1) The robust resource allocation problem we investigate
here is with cardinality constrained uncertain parame-
ters, which decrease the conservatism of the problem
using polyhedral uncertain parameters.

2) We propose a distributed primal-dual projected algo-
rithm with considering the duality theory of convex op-
timization.

3) The proof of the convergence of this algorithm has been
given by employing the theory of nonsmooth analysis
and differential inclusion.

This paper is organized as follows. Section 2 introduces
the necessary preliminary concepts of graph theory, projec-
tion operator and differential inclusion. Section 3 shows
the robust nonsmooth resource allocation problem with car-
dinality constrained uncertainty. Section 4 proposes a dis-
tributed projected primal-dual algorithm. Section 5 provides
the convergence proof of the algorithm. Section 6 gives a nu-
merical example to show the effectiveness of our proposed
algorithm. Finally, we present conclusions in Section 7.

2  Preliminary

In this section, we introduce relevant notations, concepts
on graph theory, projection operators and differential inclu-



sions.

2.1 Graph Theory

A weighted undirected graph G is denoted by G(V, £, A),
where V = {1,...,n} isasetof nodes, & = {(i,k) : i,k €
V;i# k} C VxVisasetofedges, and A = [a; 1] € R"*"
is a weighted adjacency matrix such that ov; , = ay; > 0 if
(k,i) € € and a; 1, = 0 otherwise, where R™*" denotes the
set of n-by-n real matrices. k € N denotes agent k is a
neighbour of agent i. The Laplacian matrix is L,, = D — A,
where D € R"™*" is diagonal with D;; = > /| ;.
i € {1,...,n}. Specifically, if the weighted graph G is undi-
rected and connected, then L,, = LZ > 0.

2.2 Projection Operator

Define a projection operator as P (u) = arg min,cq{u —
v}, where 2 C R" is closed and convex, R™ denotes the set
of n-dimensional real column vectors.

Lemma 2.1. [15] Let  C R™ be closed and convex,
and define V : R" — Roas V(z) = 3(|lz — Po(y)||* —
|z — Po(x)||?) where y € R™. Then V (z) > 1| Po(z) —
Pqo(y)||?, V() is differentiable and convex with respect to
x,and VV (z) = Pa(x) — Pa(y).

Lemma 2.2. If Q@ C R" is closed and convex, then
(Pa(z) — Pa(y)"(z — y) = ||Pa(z) — Pa(y)||? for all
z,y € R™.

2.3 Differential Inclusion

Consider a nonsmooth system

& € F(x(t)),z(0) = x0,t >0 (1)

where F : R? — B(R?), B(R?) is the collection of subsets
of RY. A set M is said to be weakly invariant (strongly in-
variant) with respect to (1) if for any x¢g € M, M contains a
maximal solutions (all maximal solutions)) of (1). An equi-
librium point of (1) is a point * € R? such that 0, € F(z*).

Let V : R? — R be a locally Lipschitz continuous func-
tion and OV be the Clarke generalized gradient [16] of V()
at . The set-valued Lie derivative [16] LxV : R? — B(R)
of V with respect to (1) is defined as LxV (z) = {a €
R : thereexistsv € Fsuchthatp’v = aforallp €

V(z)}. In the case when LxV (x) is nonempty, we use
max LzV (x) to denote the largest element of LV ().

Lemma 2.3. [17] For the differential inclusion (1), we
assume that F is upper semicontinuous and locally bounded,
and F(z) takes nonempty, compact, and convex values. Let
V : R, — R be a locally Lipschitz and regular function,
S C R, be compact and strongly invariant for (1), ¢(-) be
a solution of (1), R = {z € Ry : 0 € Lx(x)}, and M
be the largest weakly invariant subset of R N S, where R is
the closure of R. If max LV (z) < 0 for all x € S, then
dist(p(t), M) — 0ast — oo.

3 Problem Formulation

In this section, the distribute nonsmooth robust resource
allocation optimization problem is formulated. Consider the
following distributed nonsmooth uncertain resource alloca-
tion problem

min Z fi(zs) 2)

x; €EQ;

] 1
Va;; € U;;

s.t. Zal]xl < bl

where j € {1,--- ,m},le{l,---
constrained uncertainty sets

,q}, and with cardinality

[l —al;, al +dl]
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3
S’Yj,vi,j,l} ( )

For agent i € {1,---,n}, z; € R% Q; is the lo-
cal constraint set, and f;(x;) is the local objective which
is continuous but not necessary smooth. aﬁj € Ris as-
sumed to take arbitrary values in the uncertainty set L{f],
bj = [b,---,bj]" € RY, and ; denotes the budget of un-
certainty.

Then the corresponding robust optimization problem of
the problem (2) is shown as

min (@)=Y (@)

T;€Q; P
s.t. Zau i max Z auxt < bl
siesiisti= S5,
je{la7m}7l€{17aq} (4’)

For the [-th dimensional elements of each agent’s states
with the j-th resource allocation condition, Sé» is a possible
set of the chosen agents where the size of S is ~;, and J} is
the set of all possible S%.

According to the duality of convex optimization [18], the
problem (4) can be transferred to the corresponding dual
problem as

n

min  f(z) =Y f'(x;)

z;€Q;
=1

st ;[Az‘jl“i + %Ww‘ +wij] < 2
flijxi < 2ij + Wij, LipngZ = Opmng,
235 > 0g, w55 > 0y,
ie{l,---,nkje{l,---,m}

Lo zy} c RIxq, Aij
diag{a};, - al. € RI%, z; € RI z
[(Z’Ll)T7 s (zi’m)T]T’ Z = [(21)T7 EE) (ZTL)T]T’ Wij
RY. Z?:l bij = bj, Linng = Ln @ Iy, where A @ B
denotes the the Kronecker product of matrices A and B. 0,
is the n x 1 vector with all elements of 0.

The assumptions below are made for the wellposedness of
the problem (5) in this section.

Assumption 3.1. 1) The weighted graph G is connected
and undirected.

2)Fori € {1,--- ,n}, f; is strictly convex on an open set
containing €2;, and ; C RY is closed and convex.

3) (Slater’s constraint condition) There exist x; € ),
Zij € R and w;; € Ri satisfying the constraint for

where A;; = diag{a}

m



i€ {l,---,n}tand j € {1, ---,m}, where R‘j_ denotes
the set of nonnegative g-dimensional real column vectors.
The Lagrangian of dual problem (5) is described as

L(z, Z,W,A', A%, U)

:Z[fl(l“i) + Z[()‘%j)T(Aijxi + Vi + w;; — byj)
j=1

+ ()T (Agmi — 25 —wig)]| + 1" Lonng Z (6)
where  w; = [(wi)T, .. (wir)T]E, W =
[(w)", .. (wa)T1, M = (M), ()T
AT = [ODT, o OTIT, i = ()T (i) 71T
U=uf,..,m)" g€ {1, 2}

Then according to problem (5), the following lemma is ar-
rived by the Karush-Kuhn-Tucker (KKT) condition of con-
vex optimization problems.

Lemma 3.1. Under the Assumptions 3.1, a feasible point
z* € R™ is a minimizer to Problem (5) if and only if there
exist ;7 € §; € RY, /\%jf" € R, )\?f € RY, pj; € RY
, wi; € R7and z7; € R? such that for i € {1,--- ,n},

—8f1 ZAU)\” ZAUAQ eNo,(z}), (Ta)

—*VjAzlf"')‘?j*_ > (g = ag) ENga (25), (TH)
keN;

=\ A ENRe (wy;), (Te)
= 1
> i + 2+ wy — big] <0, (7d)
i=1
Z[Aijxf — 255 — wiz] <0q, (Te)
i=1
Lman* :Omnq7 (7f)
()‘zl*) [Aijz; + 'YJZ +w — bi;] =0, )

()‘22*) [Aljx _sz wl]} =0. (7h)

where N, (z}) is the the normal cone of §; at z.
The proof of Lemma 3.1 is omitted since it is a trivial
extension of the proof for Theorem 3.34 in [19].

4 Algorithm Design

In this section, we propose a distributed algorithm for this
problem (5). The algorithm is detailed as below:

T € —Titwg 8fl( i) Z A\ Z A AT

)‘1 +)‘zg Zke/\/ vk (i Nkj)

Wi =—W;j + wij — )\21] + )\fj

frij =X penr, Qik(Zij — 2k;)

Aij = =g N+ [Aigmi + 575205 + wig = big)

) +Zkej\/1aik(yiljjylij)izke/\/iaik(Azlijll:j)

;\?j = —;\?j + /\12]- + [Aijz; — zij — wij]
+Zk€]\/'aik(y12g y}%]) ZkeMaik(/\?j*Aij)

yllj == D ken, O‘lk()‘ )\Ilc_])

Zi] Z7,_]+Z1j

®)

y12] = ZkGN alk()‘z] )‘%])
= Po,[Z],2i; = P]R" [2i5], wij = P]Ri (3],
)\le :P]Rq [)\21]]’ ij P]Rq [>\1,2]]

where ¢ > 0.

The algorithm (8) can be also written as a compact form
as

b €F(®),x = Pol], Z = PyynalZ), )

W :PRKWHI[W], Al = P]Rimq [A ], A = PRimq[A ]
where & = [ET ZT WT ur (AI)T, (AQ)T» (Yl)Ta (Y2)T}T
Pold] = (P, [wl]):fw- ,(Pa, [z )T]T. 5 =
(z)"s - @) 2 = (@) (z)"
w; = [(U:)il)Ta-“a(wim)T] W = [(w)",..., (w,)"]",
A= (M) G T A = ()T, ()T
vl = ()T T Y = ()T, )
ge{1,2}.

In (9), F(¢) is defined as

f(¢) {[pz:’7p£7p7[};/7pUapAlapA27pY1apY2]T
ean % R™MN4 « RMNA » R™MNG (10)

x R™M x R™™ x R™ x R™"4}

with
pr= —T+a— fo— BEA*AY — EA*A?
pz=—Z2+Z— TN + A% — L, U
Pw =—W+W —A! +A27pU = Lman
par =—A'+ A'+ [A*ETz + LT Z + W — B an
+LinngY "t = LpngA*
pre= —N+AN+[AFETz—2Z-W|
+LimngY? = LpngA?
Pyt = —Lmnq/\l,py2 = —Lmnq/\2
where £ = [, ® (1,, ® I;) € R">*™4 [, is the

n-dimensional identity matrix, 1,, denotes the n x 1 vector
with all elements of 1. A; = diag{4;1, - ,Aim} €

quxmq’ A* = diag{fh,"' ,An} c Rmncjxmnq’
Ai :A diag{Ail, e aAzm} [S quxmq’ A* -
diag{Al, ce ,An} S Rmnqunq, r = In &
diag{/yqu’. .. ’,ym_[q} € Rmnaxmng Lmnq =L,® [mq,
b = [(bi)", ..., (bi)T]", B = [(b1)T, ..., (ba)T]%,
fz € 0f(2).
Then the equilibrium of algorithm (9) is
0= — &* + 2" — for — EA"AY — EA*A*>*  (12a)
ing= — 2* + Z* — EFAl* + A% — LyngU* (12b)
mng=— T w* +W* - A + A (12¢)
(12d)

mnq:_]xlﬁ_Alﬂ_m*E

LinngY'™ (12€)

0

0

Omnq:Lmnq z*
1

0 Tzﬁ—EFZfl—W*—BH—

0

0

mng=— A H AP [A B2 W H Lypn Y (12f)
mnq:Lmnqu*a Omnq = LanAz* - (123)

x*=Pq[z*], Z" = P]anq [Z*], W™ :PRTW [W*] (12h)
AV =Pyrmna[A7], A% = Prona [A**] (12i)

Here we give the Lemma 4.1 to link the equilibrium of
algorithm with the solution of problem (4).



Lemma 4.1. Consider Problem (4) and Assumption 3.1
holds. If ¢* € R(T™+1n4 is an equilibrium of (8), then
x* = Pq[Z*] is a solution to Problem (4).

Proof. Suppose ¢* € R(™™+1)n4 i an equilibrium of (8).
When considering (12a), (12b) and (12c), there exists f,« €

0f(z*) such that z* = a* — foo — EA*AY — BEA*A%,
7% = Z*_%FA1*+A2*_Lman*,—W* _ W*—A1*+{\2*.
Since #* = Po[#*], 2% = Pgrna[Z*], W* = Pgmna[W*],

it follows that (7a), (7b) and (7c¢) holds.
According to (12e) and (12f), one can have that

_ 1
Q](*A1*+A1*+[A*ETIE*+7FZ*+W*7B]

n

F LonngY ™) ==Y (A =M+ ZH}; =0, (13
i=1
Qj(_]\2* +A2* [A*ET * Z* _ W*] +Lman2*)

=— i(ﬂ?; — M) ZHQ* = (14)
i=1

where Q; = 15@([%@[ ) € R¥*mn4_ [J denotes the j-th
tow of Iy QjLyngY ™™ = 0, QijanQ* =0, Hl{j =
Aljxl+ 7%+ Wig— bij, H = /L]xi 2z — w;;. Since
)\} = PRmnq[ 1j] > 04, )\2 = P]Rmnq[ Qj] > 0, /\1 —
Al <0, and A% — A} <0, foralli € {1,---,n}. Hence
(7d) and (7e) holds. (12d) equals to (7 f), which means that
(7f) holds.

It follows from (12g), (12i) and \j; = Pga [S\gj] > 0,
X} = Pag [A7;] > 0, that there exist \j* € R and \§* €
R’ such that A™ = A\* ® 1,, and A** = \3* ® 1,,. If
A = 0y and N3 = 0,,,, the (7g) and (7h) holds. If
A* > 0,5 and A3* > 0,,,, it is clear that /\1* = M7
AB = B S HE = 0,and YO HY = 0 which
means that (7¢g) and (7h) also holds.

By Lemma 3.1, (z*, Z*, W*) €  x R™" x R™" js
an optimal solution of Problem (5). Note that Problem (5)
is the strong dual problem of Problem (4). Then the proof is
accomplished. O

5 Main Result

In this section, we give the convergence analysis of our
algorithm (8). Define the Lyapunov candidate

V(¢) =Vi(Z) + Va(Z) + Va(W) + V4(U)

, (15)
+ Va(AY) + Vo(A?) + V(Y1) + Va(Y?)
where
Vi(z) = 5(|lz — «*|* - ||z — [*)
Vw(Z2)=351Z2 - 2P - 1Z - Z|]?)
Va(W) = 5([[W = W*[]> — [W — W||?)
Va(U) = 3(I|U = U"1%) a6)
Vs(AY) = (A — A2 — [[(JAT — AM)?)
Vo(A?) = (A% = A7 — [|(IA% = A21?),
Va(Yh) =3Iy =Y?)
Vs(Y?) = (Y2 = Y|

In the following lemma, we have analysed the set-valued
derivative of V(¢) defined in (15) along the trajectories of
Algorithm (8).

Lemma 5.1. Consider Algorithm (8) under Assumption
3.1 with V(¢) defined in (15). If 8 € L£V(¢), then there
exist f, € 0f(x) and f,- € Of(x*) with x = Pq[Z] and
x* = Pq[Z*] such that

B<—(@—a") (fo— for) — (A
— (AHT LypngA2 <0

TLmn Al
) a (17)

Proof. Tt follows from Lemma 2.1 that the gradients of V()
with respect to ¢ are

V(g)=a—a*,V,V(9) = Z - Z*

VWV(qs) W W*, VyV(é)=U—U* )
Vi V() = Al — A Vi V(g) = A2 — A%

Vyi V() = Y-V, VyaV () = Y2 - Y

The function V' (¢) with the trajectories of (8) satisfies

LrV(¢) ={BeR:B=V:V($) pz+V V() p
+VaV () pw + VoV (8) pu
+ Vi V() px + Vi V(9) pie
+ Vi V() py1 + Vy2V(9) py=}
Suppose 8 € LV (¢). There exists f, € Jf(x) such
that 8 = 35, B;, then

19)

(z —2")T(~z + 2— f—EA*A'-EA*A?)
(Z2—-2°)(=Z+Z— TN + A% = LyngU)
(W =W (=W + W — A 4 A2)

64 —(U U*)TLman
=(A' = AT (A + A+ [A*ETz + iTZ 20)
AW = B+ LigngY! — LinngAb)

Be =(A2 — A2*)T (A2 + A2 + [A*ET2 — Z
W] + LuinngY? — LinngA?)

ﬁ7 :_(Yl - Yl*)TLnanAl

68 — 7(Y2 _ YQ*)TLmnqAZ

Since ¢* € R(7+1)74 i5 an equilibrium of (8), there ex-
ists fy« € Of (x*) such that (12) holds.
From (12) and (20), one can have that

B=—(z—2")"(@-7")+ ]z —2"||?
~(Z-72Z-2)+|Z - 7|
= (W =WHTW = W) + W — W2
= (AT = AT)TA = AT) + AT = AT2 @D
— (A7 = AZ)T(AZ =A%) + [|A — A2
— (A LinngA' = (A*)T LynngA?
= (@ =2 (fo = for)

Since Lyng > 0and (x—2*)T(f,— fz) > 0followed by
the convexity of f, then according to Lemma 2.2, it follows
from (21) that (17) is satisfied. ]



The following theorem proofs the convergence of trajec-
tory x(t) with the proposed algorithm (8) to the optimal so-
lutions.

Theorem 5.1. For Algorithm (8) with Assumption 3.1,
we have that the results that

(i) the trajectory (x, Z, W, A, A%, ¢) is bounded;

(ii) x(t) converges to the optimal solution to Problem (4).

Proof. 1) Let V(¢) be as defined in (15). It follows from
Lemma 5.1 that

max LxV (@)

<max{—(z — CU*)T(fx — fur) = (AN Ly A
- (AL mng\" 1 fo € Of (x), for € Of(z¥), (22)
xr = PQ[ ] A = P]Rmnq [A ],A2 = PRT’"" [/_\2]} <0

Note that V(6) > L(llz — *[2 + | Z — Z°|]2 + W —
WoI? + U — U% 2+ AT — A2 + A2 — A% +
[Y1 — Y2 + ||Y2 — Y2*||2) according to Lemma 2.1.
Hence that trajectory (x(t), Z(t), W (t), U(t), A1 (t), A%(t),
Y1(t),Y2(t)), t > 0is bounded.

Because Of(z) is compact for all = €
(x(t), Z(t), W (1), U(t), AL (t), A*(t), Y (), Y (1))
is bounded for all ¢ > 0, there exists M =
M (z,Z,W,A', A2, $) > 0 such that

Q) and

M > [|2(t) = faw) — EA™AY(t) — EA*A? (1)

M > || Z(t) = sTAN () + A2(t) = LinngU (8|

M > [[W(t) = A'(t) + A2(1)]

M > ||[AY(t) + [A*ETx(t) + ITZ(t) + W(t)  (23)
—=B]+ LinngY'(t) — Ling A ||

M > ||A%(t) + [A*ETx(t) — Z(t) — W(t)]
+Lman2 (t) - LmnqA2 (t)H

for all f,;) € Of(x(t)) and all t > 0. Define X : R™ x
R x R™MM x R™MNM x R™M™ — R by

2
R _ .
XGZW A= (a2 ZIH IS IR @9

=1
The function X (7, Z, W, A', A?) along the trajectories of

() satisfies that

LrX(z,2,W,A",A?)

={z"(-z+ 2~ fo - EA"A' = EA*A?)
+ ZT(_Z + 7 — lFAl + A% — LyngU)
n
FWT(=W + W = AL+ A%) + (AT (AL AL

(25)
+ [A*ETJU—F rz+w-— B] manl_anqu)
+ (A?) (—A2+A2+[A*ETx—Z—W]+Lman2
*LmnqA%:freaf( ),z =Pqlz],Z= P]R:’_”“‘[Z]’

W=Pgmna[W], A'=Pgmna[A'], A*=Pgrna[A*]}

Note that

—lz*+ Mz > 2 () (=2 (t) + 2(t) = fow)
—EA*AL(t) — EA*A2(1))
—NZIP+M||Z|| > Z7 (#)(—Z()+Z (t)— TA (1)
+A%(t) = LingU (1))
—[WIP+M[[W || =W () (=W (t) + W (t)
—AN(t) + A%(1))
—[AY [P+ MAY = (AT () f\l(t)+A1(t)
HAETa(t)+ LT Z(0)+W (1)
_BH‘Lmnq () mnqu(t))
—[|AZ|P+ M[AZ]| = (A%)T (#) (=A% (t) + A%(2)
+HAET2(t) - Z(t) - W(t)]
+Lman2(t) mnqA (t))

(26)

Hence,

max LrX (Z(t), Z(t
<—2X(z(t), Z(t),W

+ 50X (2(t

), W (t), A (), A (1))
(t), A1), A*(1)) @7
), Z(t), W (t), AL(t), A%(t))

It can be easily verified that X (z(t), Z(t), W(t),
A2(t)), t > 0, is bounded, so are Z(t), Z(t), W (t),
A2(t) for all t > 0. As the result, the trajectory (z,
AL, A2, ) is bounded.

ii) Let
R C{¢ S R(7m+1)nq T = PQ[j] x*
ot
fLeaf(w) fT eaf(z*)( ) (fo
LmnqA = 0mnq> Lmnq = 0rnnq}

Pﬂ[j*]a
—far) =0, (28)

Note that (x—x*)T (f, — fz+) > 0if x # z* since the As-
sumption 3.1. Hence, R C {¢ € Rzmi1)ng : LimngA' =
0.1ngs LinngA% = Opnng, @ = PolZ] = z*}. Let M be the
largest weakly invariant subset of R. According to Lemma
2.3,¢ — M ast — oo. Hence, z(t) — x* as t — oo. Part
(ii) is thus proved. O

6 Simulation

In this section, we show a numerical example to validate
our proposed distributed optimization algorithm. Consider
the distributed robust optimization problem with four agents
moving in a 2-D space with first-order dynamics as follows

4

F(z) =Y |lzi — pil3 + |zl (29)

i=1

where p; = [i, —i], || - ||2 denotes the I norm, ; = {4 €
R[|6 — a;(0)]2 < 30}, m = 2, = 79 = 2, Ay =
0.1-2 'IQ, Aﬂ =0.1- (577,) ‘IQ, Aig = Ai17 Aig = Ail, and
bt = [-15,-5]T, b? = [-10,—4]T, b} = [0,—6]7, b} =
[4,0]7, by = [=5, =17, b5 = [—-4,=3]", b3 = [0, -27,
by = [1,-5]T, by = [-21,-15]T, by = [-8,—11]7. This
problem can be transferred to its corresponding dual problem
as the form of problem (5). The Laplacian of the undirected
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Fig. 1: The trajectories of x;(t),7 € {1,2,3,4} with algo-
rithm (8)
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Fig. 2: The trajectories of G1(x) and Gj2(x), j € {1,2}
with algorithm (8)

graph G is given by
Ly= (30)

The initial positions of the agents 1, 2, 3, and 4 are set
as 71(0) = [-13,12]T, 22(0) = [17,15]F, 23(0) =
[-10,—11]7 and z4(0) = [16,—14]T. We set the ini-
tial values for the Lagrangian multipliers )\}j, )\fj, Hij
and auxiliary variables z;;, w;j, yilj, yfj as zeros for
i € {1,2,3,4},5 € {1,2}. The optimal solution is
2t = [~7.439, —10.408]7, 23 = [~4.016, —6.409]T, 2} =
[~15.516, —17.612]7, 2 = [—13.401, —19.965]7 .

Fig.1 gives the trajectories of x;(t),7 € {1,2,3,4}. It
can be seen that the trajectory of x converges to the optimal
solution. Let G (z) = E?:l Hilj, Gjo = Z?:l Hfj,j €
{1,2}. Fig.2 shows the trajectory of G;1(z) and Gj2(z),
j € {1,2}, which proves that the constraint condition of
problem (4) are satisfied.

7 Conclusion

In this paper, a distributed nonsmooth resource allocation
problem with cardinality constrained uncertainty has been
investigated. With the help of duality theory about convex
optimization, a deterministic distributed robust resource al-
location problem with linear optimization formulation has
been derived under the framework of multi-agent system. A
distributed projection-based algorithm has been proposed to
deal with this problem. Based on stability theory and differ-
ential inclusions, the proposed algorithm has been proved to
reach the optimal solution and satisfy the resource allocation
condition simultaneously.
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