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bstract

his paper investigates the high-speed train rescheduling (HSTR) problem under a partial station blockage and pro-
oses an efficient problem-specific strengthen elitist genetic algorithm (PS-SEGA) for HSTR. Firstly, a HSTR model
bject to train operation constraints is established to minimize the total train delay. A permutation-based encoding
ethod is developed to define an efficient search space based on the train departure sequence. A heuristic decoding
ethod is employed to eliminate all train operation constraints and output the rescheduled timetable. Moreover, a

ybrid initialization method involving an efficient heuristic strategy (EHS) is put forward to accelerate the conver-
ence speed of PS-SEGA. Using problem-specific knowledge, EHS generates an efficient and feasible solution for
e initial population. Finally, a restart strategy is presented to maintain genetic diversity. Compared with other ad-

anced evolutionary algorithms and their improved variants also using the improvements of PS-SEGA, experimental
sults demonstrate the effectiveness of the proposed PS-SEGA for addressing HSTR scenarios under the partial s-
tion blockage. As for the scenarios that CPLEX cannot obtain optimal solutions within 10 minutes, PS-SEGA can
rovide quasi-optimal solutions in real time. Furthermore, compared with the other two heuristics algorithms (i.e.,
irst-Scheduled-First-Served and EHS), PS-SEGA can give the train departure sequence with a smaller total train
elay.

eywords: High-speed railways, Train rescheduling, Evolutionary algorithm, Genetic algorithm, Permutation-based
ptimization.

. Introduction

High-speed railways have become the preferred way of public transportation with an environmentally friendly,
igh punctuality, and comfortable service. Some countries, e.g., Germany, Japan, and China, gradually build high-
eed railways to strengthen city links. For instance, more than 42000 kilometers of high-speed railways have been

ompleted in China until 2022. High-speed railways are significant in promoting economic construction, speeding up
arbon neutrality, and improving coordinated urban development.
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With the growth of operating mileage and the increase in passenger flow, high-speed railway companies should
nsure operation efficiency and drive more passengers to their destinations. The safe and efficiency of railway man-
gement are guaranteed by the train planned timetable that stipulates the arrival or departure times and departure se-
uences. However, unexpected emergencies (e.g., strong winds, railway infrastructure malfunctioning, earthquakes,
tc.) often happen. Dispatchers require to adjust the train timetable to restore the original order. According to the
me and position of the emergencies, dispatchers will install a segment blockage, a station blockage, or a temporary
eed restriction. Influenced by emergencies, the arrival or departure times of trains may deviate from the planned

metable. It is urgent to draw up available contingency plans for each emergency. The above process can be called
e problem of high-speed train rescheduling (HSTR). Nowadays, HSTR is still mainly handled by dispatchers based

n their experience in emergencies. It is difficult to guarantee both the optimality and rapidity of the HSTR solution.
herefore, it is imperative to investigate an approach that can obtain a quasi-optimal HSTR solution in real time.

As an NP-hard problem [1, 2], HSTR is to obtain a new timetable when the original one becomes infeasible by
djusting train arrival and departure times, selecting proper routes at stations, or canceling trains [3]. The computation
me of solving HSTR appears to be exponential with the growth of trains and stations. The approaches to addressing
STR comprise the following three types.

Operational Research (OR): Since the problem of optimal train scheduling was proposed by Szpigel in 1973
], much research has concentrated more on OR. The common models of OR approach involve the mixed integer

near programming (MILP) model, job shop scheduling (JSP) model, and alternative graph model. The MILP model
as usually established based on train operation constraints in block sections and stations to minimize the train
elay [5, 6], the number of canceled trains [7–9], or the passenger travel time [10]. Mascis and Pacciarelli first
roposed an alternative graph model for the JSP problem [11]. Then D’Ariano and Corman et al. [12–14] developed
e alternative graph model in the real-time railway management system to resolve conflicts in block sections and
ations. In addition, the alternative graph model in HSTR was usually associated with the JSP model [15], where a
ain corresponds to a job and a block section to a machine.

Evolutionary Algorithms (EAs): Utilizing the characteristics of genetic crossover and variation in biological
opulations, EAs have resolved many HSTR problems in recent years, e.g., genetic algorithm [16–19], NSGA-II [20],
nt colony optimization [21–23], etc. Some encoding/decoding methods, heuristic initialization methods, and restart
rategies were used to accelerate the convergence of EAs in some NP-hard problems [24–28]. Although it is difficult
guarantee the optimality of each solution, EAs can provide a quasi-optimal solution at less computation cost. With

ppropriate improvement strategies, EAs are suitable to address the HSTR problem in real time.
Reinforcement learning (RL): With the rapid development of intelligent technologies, artificial intelligence, rep-

sented by reinforcement learning (RL), has been gradually applied in theoretical research and engineering practice.
railway optimization problems, RL has been widely used in automatic metro train control [29], passenger inflow

ontrol [30], energy storage system for urban rail [31], heavy haul train control [32], etc. In particular, much research
as focused on the train rescheduling problem using RL on a single-track railway [33, 34], which mainly addressed
e problem of deadlock resolution and train delay minimization. Other RL approaches, e.g., Deep Q Network [35],
onte Carlo tree search [36], have also been associated with RL to resolve HSTR.

OR has advantages in providing an optimal solution for HSTR, but branch and bound rules need to be designed
improve the computation efficiency. Unlike OR, the offline training model generated by RL can directly provide

n online HSTR solution in real time [35]. In our previous study, we proposed an approach called Monte Carlo tree
arch in a RL environment to adjust arrival and departure times to minimize train delay [36]. The difficulties of RL for
solving HSTR are how to design a RL environment and search for an optimal solution during the training. Compared
ith OR and RL, EAs do not always obtain an optimal solution but can provide an available and quasi-optimal solution
real time using problem-specific knowledge. In summary, if the HSTR approach requires to be applied in an existing
stem, it is unsuitable to pursue only the solution optimality, ignoring the real-time performance. In particular, EAs

an maintain a trade-off between the optimality and rapidity of the HSTR solution.
Recently, few studies have solved HSTR by combining EAs with the characteristics of the problem. Therefore, we

ropose an efficient problem-specific strengthen elitist genetic algorithm (PS-SEGA) for HSTR under a partial station
lockage to minimize the total train delay by reordering and retiming trains simultaneously. More significantly, we
aintain a trade-off between the optimality and rapidity of the HSTR solution. Aiming at the limitations of traditional
As addressing HSTR, we conclude the contributions of this paper as follows.
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(1) The encoding method is used to input decision variables to PS-SEGA and determines the population size.
The traditional integer-based encoding method uses train arrival and departure times to denote the population
individuals of PS-SEGA, but it consumes too much time in solving HSTR. To improve search efficiency, we
present a novel permutation-based encoding method to denote the train departure sequence at the blockage
station as the population individual. There is no need to consider all the arrival and departure times in the train
timetable. This encoding method can avoid invalid searches and greatly improve solution efficiency.

(2) Though the existing decoding method with integer-based encoding can directly output the rescheduled timetable,
it needs to handle all train operation constraints and consumes too much time. To improve the computation
efficiency, we propose a heuristic decoding method to realize no-constraint processing. The train departure se-
quence calculated by the proposed permutation-based encoding method is converted into the final rescheduled
timetable.

(3) The traditional rand initialization method provides different individuals for the initial population to keep good
diversity. However, this method leads to low search efficiency. To accelerate the convergence speed, we develop
a hybrid initialization method for PS-SEGA to provide an efficient solution for the initial population. This pop-
ulation involves random individuals and an efficient heuristic strategy that utilizes problem-specific knowledge
of the HSTR problem.

The remainder of the paper is formulated as follows. Section 2 establishes a mathematical model of HSTR. Section
presents the improvements of the proposed PS-SEGA for HSTR. Numerical experiments and algorithm comparisons

re performed to validate the performance of PS-SEGA in Section 4. Section 5 summarizes the paper and provides
rther work.

. Model formulation

This paper considers a double-track high-speed railway line containing G trains and I stations. Train g departs
om the origin station, passes or stops at the intermediate station i, and arrives at the terminus I. Assume that a
artial station blockage occurs at station i′. The scenario under the partial station blockage considered in this paper
an be illustrated in Fig. 1, where tstart and tend represent the start and end time instants of the blockage, respectively.
otably, trains can only arrive at the station but cannot depart in the station-blocked area. Facing the station blockage
the HSTR problem, dispatchers should determine the departure sequence of all influenced trains to minimize the

tal train delay. However, this problem is addressed by the dispatcher’s experience and is not easily solved in real
me. Therefore, we propose an algorithm called PS-SEGA to reorder trains at the blockage station i′ to minimize the
tal train delay. To better illustrate the model, we lists all the parameters in Table 1. The assumptions of HSTR are

s follows.

(1) Trains cannot arrive at the next station or depart from the current station earlier than the planned time.

(2) Determined by dispatchers, the start and end time instants (tstart and tend) of the partial station blockage are
known and fixed when rescheduling trains.

(3) The strategy of reordering trains is merely permitted at station i′.

(4) Trains run according to the minimum dwell times, headways, running times, and tracing times in each block
section.

Assumption 1) ensures the necessary service for alighting and boarding passengers at all stations. Assumption
) depicts the regulations that trains must comply with under a partial station blockage. The installed partial station
lockage does not affect the trains leaving before tstart. However, the trains in blocked window [tstart, tend) are only
llowed to depart after tend. Assumption 3) is to meet the actual high-speed railway conditions in China according

the technical specification in the centralized traffic control system [37]. The technical specification regulates that
ains are rarely reordered along the railway line except for the blockage station. Following Assumption 4), trains
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Figure 1. Illustration of the partial station blockage in time (horizontal axis) and space (vertical axis).

ould compress interval buffer times by tracking each other closely under a quasi-moving block system to minimize
e total train delay.

Remark 1: Note that we do not consider a segment blockage. The reasons are as follows. The segment blockage
etween two stations only causes all trains to arrive late at the next station. The strategy of reordering trains is not
llowed at the subsequent stations, according to Assumption 3). Therefore, trains run only following the original order

the planned timetable. The train departure sequence hardly requires to be changed under the segment blockage.
imilarly, we do not consider a complete station blockage under which the operation of receiving and sending trains is
iled. This blockage causes all trains to stop in front of the blockage station. When the blockage ends, the trains pass
e blockage station following the departure sequence in the planned timetable. There is no need to reorder trains.

.1. Objective function

When a partial station blockage causes train delays, railway companies usually focus on recovering trains in
gular operating order. Hence, following Assumption 1), the objective function Y of HSTR is defined as the total
ain delay, i.e.,

Y =

G∑

g=1

I∑

i=1

[(
ag,i − āg,i

)
+

(
dg,i − d̄g,i

)]
(1)

here ag,i and dg,i are the actual arrival and departure times for train g (g ∈ {1, 2, ...,G}) at station i (i ∈ {1, 2, ..., I}),
spectively. The planned arrival time āg,i and departure time d̄g,i are obtained from the planned timetable.

.2. Constraints

.2.1. Constraints of the partial station blockage
Note that we consider reordering trains at the blockage station i′. When the blockage ends, assume that train g′

the first train departing from station i′. Let ḡ and g′′ represent the train not affected by the blockage and the train
fluenced by the blockage respectively. Followed from Assumptions 2) – 4), the actual departure times for trains are

iven by 

dḡ,i′ = d̄ḡ,i′ , d̄ḡ,i′ < tstart, ḡ ∈ Mno

dg′,i′ = tend, d̄g′,i′ > tstart

dg′′,i′ = d̄g′′,i′ + hdd
g′′−1,g′′,i′ , d̄g′′,i′ > tstart , g′′ ∈ Mblk.

(2)

Eq. (2), note that Mno = {1, 2, ..., g′ − 1} is the set of the trains that are not influenced by the partial station blockage.
the planned departure time d̄ḡ,i′ for train ḡ at station i′ is earlier than tstart, train ḡ can depart from the blockage station
on time, i.e., the actual departure time dḡ,i′ equals d̄ḡ,i′ . As a result, train ḡ will be delayed. Instead, the other trains
ust leave after tend. Because train g′ first leaves from station i′, the actual departure time dg′,i′ equals tend. Note

4
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Table 1. Parameters of the model formulation.

Notation Definition

Parameters

G total number of trains
I total number of stations
g train index, g ∈ {1, 2, ...,G}
i station index, i ∈ {1, 2, ..., I}
i′ index of the blockage station, i′ ∈ {1, 2, ..., I}
tstart start time of the station blockage
tend end time of the station blockage
Y objective function
āg,i planned arrival time for train g at station i
d̄g,i planned departure time for train g at station i
g′ index of the first train departing from the blockage station i′, g′ ∈ {1, 2, ...,G}
ḡ index of the train not affected by the station blockage, ḡ ∈ Mno
g′′ index of the train affected by the station blockage, g′′ ∈ Mblk
d̄ḡ,i′ planned departure time for train ḡ at station i′

dḡ,i′ actual departure time for train ḡ at station i′

d̄g′,i′ planned departure time for train g′ at station i′

dg′,i′ actual departure time for train g′ at station i′

d̄g′′,i′ planned departure time for train g′′ at station i′

dg′′,i′ actual departure time for train g′′ at station i′

hdd
g′′−1,g′′,i′ depart-depart headway for train g′′ − 1 and g′′ at station i′

sg,i actual dwell time for train g at station i
smin

g,i minimum dwell time for train g at station i
haa

g,g+1,i actual arrive-arrive headway for train g and g + 1 at station i
hdd

g,g+1,i actual depart-depart headway for train g and g + 1 at station i
had

g,g+1,i actual arrive-depart headway for train g and g + 1 at station i
haa,min

g,g+1,i minimum arrive-arrive headway for train g and g + 1 at station i
hdd,min

g,g+1,i minimum depart-depart headway for train g and g + 1 at station i
had,min

g,g+1,i minimum arrive-depart headway for train g and g + 1 at station i
rg,i actual running time for train g from station i to i + 1
rmin

g,i minimum running time for train g from station i to i + 1

Decision variables ag,i actual arrival time for train g at station i
dg,i actual departure time for train g at station i

Sets Mno set of trains not affected by the station blockage, Mno = {1, 2, ..., g′ − 1}
Mblk set of trains affected by the station blockage, Mblk = {g′ + 1, g′ + 2, ...,G}

at train g′′ (g′′ ∈ Mblk) stands at station i′, where Mblk = {g′ + 1, g′ + 2, ...,G} is the set of the trains affected by the
lockage except for train g′. The actual departure time dg′′,i′ equals the planned departure time d̄g′′,i′ plus the depart-
epart headway hdd

g′′−1,g′′,i′ , which is to guarantee a safe operation between the two successive trains g′′ − 1 and g′′ at
ation i′.

.2.2. Constraints of train operation
During the actual train rescheduling process, the regular operation that all trains should comply with usually

onsists of arrival, departure, stop, or pass at a station and run, tracking in a block section. Firstly, the constraint of
e actual dwell time sg,i for train g at station i is presented by

sg,i = dg,i − ag,i ≥ smin
g,i (3)

5
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r ag,i ≥ āg,i and dg,i ≥ d̄g,i according to Assumption 1). The actual dwell time sg,i should satisfy the constraint of the
inimum value smin

g,i to ensure the operation of alighting and boarding passengers.
To guarantee the two successive trains g and g+1 to enter or depart from the current station i safely, the three types

f headways (arrive-arrive headway haa
g,g+1,i, depart-depart headway hdd

g,g+1,i, arrive-depart headway had
g,g+1,i) should all

tisfy the minimum value, which can be formulated as

haa
g,g+1,i = ag+1,i − ag,i ≥ haa,min

g,g+1,i (4)

hdd
g,g+1,i = dg+1,i − dg,i ≥ hdd,min

g,g+1,i (5)

had
g,g+1,i = ag+1,i − dg,i ≥ had,min

g,g+1,i (6)

r g, g + 1 ∈ {1, 2, ...,G} and i ∈ {1, 2, ..., I}, where ag+1,i and dg+1,i are the arrival time and departure time for train
+ 1 at station i, respectively. The variable haa,min

g,g+1,i , hdd,min
g,g+1,i, and had,min

g,g+1,i are the minimum values of the corresponding
eadways.

The running time rg,i for train g from station i to i + 1 also has the minimum value due to the constrain of train
ynamics, which can be described as

rg,i = ag,i+1 − dg,i ≥ rmin
g,i (7)

here rmin
g,i is the minimum running time and ag,i+1 is the arrival time for train g at station i + 1.

.3. HSTR model

To maintain a trade-off between model accuracy and algorithm computation speed, we establish a macroscopic
teger linear programming (ILP) model for HSTR based on the train operation constraints (see Eqs. (2)–(7)). The
STR model is formulated as follows:

min Y
s.t. (2) − (7)

g, ḡ, g′, g′′, g′′ − 1, g + 1 ∈ {1, 2, ...,G}
i, i′, i + 1 ∈ {1, 2, ..., I} .

(8)

. PS-SEGA for HSTR

HSTR is an NP-hard problem with train operation constraints [1, 2]. It is difficult to address the NP-hard problem
erely using EAs, which may cause lower quality and efficiency for some solutions. However, EAs can acquire
quasi-optimal or even optimal solution in real time with appropriate improvement strategies. So we propose an

fficient evolutionary algorithm called PS-SEGA for HSTR based on the ILP model (see Eq. (8) in Section 2.3). The
roposed PS-SEGA considers the NP-hard feature of HSTR and combines train rescheduling characteristics with the
dvantage of EAs. Firstly, the basic parameters of EAs are prepared. The initial population will be generated by the
ybrid initialization method. Then, the genetic process involving selection, crossover, and mutation will be carried
ut until the maximum generation number is reached. The heuristic decoding method will output arrival and departure
mes, and calculate the objective value for each generation under the partial station blockage. In addition, the restart
rategy will be executed if the current population loses diversity. Finally, the optimal individual will be recorded.
he corresponding rescheduled timetable will be output by the heuristic decoding method. Overall, the pseudocode
nd flow diagram of PS-SEGA are described in Algorithm 1 and Fig. 2. The main improvements of PS-SEGA are
epicted as follows.

.1. Encoding method

The encoding method is used to input decision variables of the HSTR model to PS-SEGA. Firstly, we introduce
traditional integer-based encoding method to represent the population individual of PS-SEGA. To improve the

omputation efficiency, we propose a novel permutation-based encoding method to define an efficient search space.

6
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lgorithm 1 PS-SEGA
Input: The planned arrival time āg,i and planned departure time d̄g,i; The time period [tstart, tend) under the partial
ation blockage;
utput: The actual arrival time ag,i and actual departure time dg,i after reordering trains at station i′;

1: Set the population size Npop in the encoding method;
2: Initialize the maximum number NFEmax of function evaluation, the restart threshold ε; Record the current number

m of function evaluation;
3: for m = 1 to NFEmax do
4: Initialize the initial population pop with train departure sequences using Algorithm 3;
5: Select parent individuals from pop; Perform crossover, mutation to produce offspring individuals; Merge the

above parent and offspring individuals;
6: Calculate the objective values (see Eq. (1) in Section 2.1) of the current individuals using the decoding method

(see Algorithm 2);
7: Calculate the fitness of the current individuals;
8: Generate a new population pop with the size of Npop by the fitness ranking method;
9: if the diversity of the current population pop is less than ε then
0: Perform the restart strategy by Algorithm 4;
1: end if
2: end for

Record the optimal individual and decode it using Algorithm 2 to output the train timetable (i.e., ag,i and
dg,i);

3: return

Start

Initialize Npop , NFEmax , ε , m 

Initialize the initial population pop 

using Algorithm 3

m > NFEmax

Select, crossover, mutation

Calculate the objective values 

using Algorithm 2

Calculate the fitness of the current 

individuals

Input`ag, i ,`dg, i , 

Generate a new population pop 

Output the rescheduled 

timetable  (ai, j , di, j)

End

Y

N

 the diversity of pop < ε

Restart strategy 

using Algorithm 4

Y

NRecord the optimal individual 

using Algorithm 2

Figure 2. Flow diagram of PS-SEGA.
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.1.1. Integer-based encoding
The essence of HSTR is to minimize the total train delay of trains by adjusting the arrival and departure times

f each train at each station. In this way, the existing integer-based encoding method is the most straightforward
ethod that uses arrival and departure times to denote individuals for EAs [17, 38]. So a population individual in the
teger-based encoding method can be designed as

xIN =
[
a1,1, d1,1, . . . , ag′,i′ , dg′,i′ , . . . , aG,I , dG,I

]
(9)

ith g′ ∈ {1, 2, . . . ,G} is the first train departing from the blockage station i′ (i′ ∈ {1, 2, . . . , I}), where xIN is a vector
f arrival and departure times at all stations along the line. The dimension of xIN is 2 · G · I. Since station 1 and G
re the origin station and terminus, the arrival time at station 1 and the departure time at station G do not exist. For
milarity, let a1,1 = d1,1, dG,I = aG,I . When station i′ blocks, the arrival and departure times (ag′,i′ , dg′,i′ , . . . , aG,I , dG,I)
fter tstart should move backward. PS-SEGA is used to adjust the train arrival and departure times in the representation
f the integer-based encoding method.

.1.2. Permutation-based encoding
With the increase of trains and stations, the computation time of traditional integer-based encoding in solving

STR increases exponentially. The existing method cannot guarantee the real-time performance of the rescheduling
rategy. Therefore, combing the characteristic of HSTR and the advantage of evolutionary algorithms, we propose
novel permutation-based encoding method. According to Assumption 3), the rescheduling strategy of reordering
ains only occurs at the blockage station i′. Hence, we can merely consider the train departure sequence at station i′.
this way, we propose a permutation-based encoding method by defining an efficient search space to address HSTR.

he population individual in the permutation-based encoding method is defined as

xPE =
[
c1,i′ , c2,i′ , . . . , cg,i′ , ..., cG−1,i′ , cG,i′

]
(10)

here xPE is a vector denoting the train index (c1,i′ , c2,i′ , . . . , cg,i′ , . . . , cG−1,i′ , cG,i′ ) at the blockage station i′. All the
ain indexes form a train departure sequence at the station i′. Therefore, the adjustment range of search space that
S-SEGA considers is reduced from 1440 minutes daily to the number of trains G. The novel encoding method can
oid searching infeasible and unnecessary search space. Finally, different individuals (i.e., different train departure
quences) form a new population, which will continue to be selected, crossed, and mutated by PS-SEGA until the
aximum generation number is reached.

.2. Decoding method

HSTR is essentially a constrained optimization problem [39]. The traditional decoding method with integer-based
ncoding can directly converted the population individuals into the train rescheduled timetable. However, this method
quires handling all train operation constraints and consumes too much time. Therefore, we propose a heuristic

ecoding method to eliminate all the HSTR constraints (see Eqs. (2)–(7) in Section 2) to improve the computation
fficiency. The train departure sequence obtained by the permutation-based encoding is denoted as the input to the
ecoding method. Significantly, the heuristic decoding method makes trains operate under the minimum value of
ain operation time, as depicted in Assumption 4). This train operation control mode is called “train tracking interval
ontrol” [40]. With the planned arrival and departure times in the departure sequence given by PS-SEGA, the process
f the decoding method in eliminating constraints is described in the following steps.

1) Check the depart-depart headways of all influenced trains at the blockage station i′ and subsequent stations to
find if constraints Eq. (2) and Eq. (5) are satisfied, respectively. If not, adjust arrival and departure times at
station i′ and subsequent stations according to the minimum depart-depart headway hdd,min

g,g+1,i′ ;

2) Check the arrive-arrive headways of all influenced trains whether to meet constraint Eq. (4). If not, adjust
arrival and departure times under the minimum arrive-arrive headway haa,min

g,g+1,i′ .

3) The arrival time ag+1,i of the latter train g + 1 is determined by the arrival time ag,i of the former train g and
haa,min

g,g+1,i′ . Therefore, the running time constraint Eq. (7) will be satisfied.

8



Journal Pre-proof

A

d
O

1

1
1
1
1
1
1

1

1
1

2

2

2
2
2
2

st
o
o
c

ti
to
c
g

p
tr
 Jo

ur
na

l P
re

-p
ro

of

lgorithm 2 Heuristic Decoding
Input: The planned arrival time āg,i and planned departure time d̄g,i; The planned arrival time āPE

g,i and planned
eparture time d̄PE

g,i in the departure sequence calculated by PS-SEGA;
utput: The actual arrival time ag,i and actual departure time dg,i in the “train tracking interval control” mode;

1: for g = 1 to G − 1 do
2: for i = i′ to I do
3: if dg+1,i′ − dg,i′ < hdd,min

g,g+1,i′ then

4: dg+1,i = dg,i + hdd,min
g,g+1,i;

5: end if
6: end for
7: end for
8: for g = 1 to G do
9: for i = i′ + 1 to I do
0: ag,i = āPE

g,i +
(
dg,i′ − d̄PE

g,i′
)
;

1: dg,i = d̄PE
g,i +

(
dg,i′ − d̄PE

g,i′
)
;

2: end for
3: end for
4: for g = 1 to G − 1 do
5: for i = i′ to I do
6: if ag+1,i − ag,i < haa,min

g,g+1,i then

7: ag+1,i = ag,i + haa,min
g,g+1,i;

8: end if
9: if dg+1,i − dg,i < hdd,min

g,g+1,i then

0: s̄g+1,i = d̄PE
g+1,i − āPE

g+1,i;

1: dg+1,i =max
{
dg,i+hdd,min

g,g+1,i, ag+1,i+ s̄g+1,i

}
;

2: end if
3: end for
4: end for
5: return

4) The departure time dg+1,i for the latter train g + 1 is decided by the departure time dg,i of the former train g and
hdd,min

g,g+1,i′ . Therefore, the dwell time constraint Eq. (3) will be satisfied.

Because trains run according to the minimum dwell times (see Assumption 4)), the arrive-depart headway con-
raint Eq. (6) is satisfied under the constraint of haa,min

g,g+1,i′ and hdd,min
g,g+1,i′ . Following the above constraint elimination

peration, the pseudocode of the decoding method for rescheduling timetable is presented in Algorithm 2. Finally, the
bjective value and the rescheduled timetable will be output by the decoding method based on the departure sequence
alculated by PS-SEGA.

Remark 2: In line17 of Algorithm 2, the arrival time ag+1,i (for train g + 1 at station i) is equal to the arrival
me ag,i (for train g at station i) and the minimum arrive-arrive headway haa,min

g,g+1,i. Hence, using the interval buffer time
accelerate, train g + 1 may add a stop at station i in the rescheduled timetable. Assume that train g + 1 will not

ompletely stop at station i. Otherwise, train g + 1 will increase an additional start and stop time. In practice, train
+ 1 can pass station i at a lower speed.

Remark 3: When adjusting departure times, as shown from line 19 to 21 of Algorithm 2, we should add the
lanned dwell time s̄g+1,i if train g + 1 has a stop at station i. That is because we cannot change the operation type for
ain g + 1 at station i from the original stop to pass. If this happens, passengers cannot board at station i.

9
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Figure 3. Comparison of the two encoding methods with the corresponding decoding method.

We present a numerical example to illustrate that the permutation-based encoding method can significantly reduce
e solution space. Fig. 3 shows how the two encoding methods denote the train timetable. In the planned timetable
ith six stations, the 18 trains are affected by the partial station blockage from 7:30 to 8:25. With the permutation-
ased encoding and decoding method, we directly consider the train departure sequence at the blockage station and
an obtain a no-constraint train timetable. The solution space under the two encoding methods is compared as follows.
he maximum time horizon of rescheduling the timetable is up to 4 hours (i.e., 240 min), so dispatchers do not have

adjust all trains for a day at once. The solution space of the integer-based encoding method is the entire time
omain (240 min) within the stage plan of 18 affected trains, i.e., 2402×18×6. However, the solution space of the
ermutation-based encoding method is the total number of all train departure sequences at the blockage station i′, i.e.,
8!. Due to 18! < 1818 < 24018 < 2402×18×6, the solution space of the permutation-based encoding method is much

aller than that using the integer-based encoding method. This example verifies that the proposed permutation-based
ncoding method can reduce the solution space and improve the computation efficiency. Finally, the decoding method
ansforms the train departure sequence into the final rescheduled timetable.

.3. Population initialization

The random initialization method provides an initial population with different individuals to keep good diversity.
owever, the random initialization method without problem-specific knowledge leads to low search efficiency. To

ccelerate the convergence speed of searching for a better strategy by PS-SEGA, we provide the initial population
ith a hybrid initialization method, including an efficient heuristic and the random initialization strategy.

Using problem-specific knowledge, the efficient heuristic strategy (EHS) generates an available departure se-
uence that produces a smaller total train delay at the blockage station. The problem-specific knowledge can be
lustrated as follows: the shorter the running time of a train along the railway line, the higher priority for the train,
hich can depart earlier from the blockage station. Let MEHS represent the set of trains whose planned departure
mes are in the period [tstart, tend). EHS only considers the influenced trains MEHS and generates the departure se-
uence CEHS. The other influenced trains whose set is denoted as MFSFS are not in the time period [tstart, tend). The
ariable CFSFS is denoted as the train departure sequence of the planned timetable for MFSFS. Combining CEHS and
FSFS, the complete departure sequence CALL of all influenced trains is considered as an efficient population individual

10
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lgorithm 3 Hybrid Initialization
nput: The planned departure time d̄g′,i′ and d̄g′′,i′ ; The start and end time instants (tstart and tend) of the partial station
lockage; The influenced trains MEHS in [tstart, tend) and the other influenced trains MFSFS;

utput: The initial population pop after using EHS;
1: Let MEHS and MFSFS be the empty set;
2: if tstart ≤ d̄g′′,i′ < tend then
3: Input train g′ and g′′ to MEHS;
4: Generate the departure sequence CEHS of MEHS using EHS;
5: else
6: Input train g′′ to MFSFS;
7: Denote CFSFS of MFSFS as the departure sequence in the planned timetable;
8: end if
9: Combine CEHS and CFSFS to produce the complete departure sequence CALL of all influenced trains;
0: Using CALL to replace an individual of the random initial population;
1: return

lgorithm 4 Restart Strategy
nput: The predefined threshold ε; The population size Npop; The number of objective values NY ;
utput: The new population pop after using the restart strategy;

1: Record the optimal individual pop′ of the current population;
2: if NY

/
Npop < ε then

3: Initialize a new initial population called pop′′ using random initialization with the size of Npop − 1;
4: Calculate the objective value and fitness of pop′′;
5: pop = pop′ + pop′′;
6: end if
7: return

input to the initial population (see line 4 of Algorithm 1). Note that g′ is the first train leaving from the blockage
ation i′. The variable g′′ denotes the train influenced by the station blockage, as shown in Eq. (2). Overall, the
seudocode of the hybrid initialization method using EHS is presented in Algorithm 3.

To illustrate the composition of the population individuals using the hybrid initialization method, we present a
pical numerical example, as shown in Fig. 4. There are six influenced trains in the period [tstart, tend) in the planned
metable. EHS generates the departure sequence of these six trains. According to the problem-knowledge of EHS,
ain 1, train 5, and train 6 have the same shortest running time along the line. So these three trains depart earlier from
e blockage station i′. The running time of train 3 is shorter than that of the other three trains. Then, compare the

alue of the running and dwell time of the other two trains. We can know that train 4 departs earlier than train 2. So
EHS is (1, 5, 6, 3, 4, 2). The other 12 influenced trains not in the time period [tstart, tend) follow the departure sequence
f the planned timetable. CFSFS is equal to (7, 8, ..., 17, 18). Combing CEHS and CFSFS, the complete departure
quence CALL of all 18 influenced trains is (1, 5, 6, 3, 4, 2, 7, 8, ..., 17, 18).

.4. Restart strategy

When PS-SEGA runs iteratively, the population converges to lower diversity. This means that most of the popula-
on individuals has the same objective value. The population may be trapped into a local optimum before finding the
ptimal individual.

To maintain population diversity, we propose a restart strategy. When the proportion of the current objective values
the population is less than the predefined threshold ε, we will rebuild this population with an optimal individual

nd random individuals, as shown in Algorithm 4. In this way, the species of population individuals recover diversity.
Fig. 5 is a numerical example of when and how to use the restart strategy to keep population diversity. Note

at there are ten individuals in the current population. The circle in the same color indicates the individual with the

11
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Figure 4. A typical numerical example of population initialization.

Restart strategy

IF

Figure 5. A typical example of restart strategy.

me objective value. So the proportion of the current objective values in the population is calculated as 0.2, which is
aller than ε (0.3). As a result, the restart strategy should be executed to produce different individuals.

.5. Illustrative example

To better understand the PS-SEGA, we present a typical illustrative example, as shown in Fig. 6. We still consider
8 affected trains running at six stations along the HSTR line. As seen in Fig. 6, the initial population has an individual
ith a smaller total train delay using the hybrid initialization method. The random initialization method produces the
ther Npop − 1 individuals. The genes (i.e., the train index at the blockage station i′) of all Npop population individuals
re changed by selection, crossover, and mutation. The better offspring individuals are produced and selected when
alculating the population fitness in the current function evaluation. If the proportion of the current objective value is
ss than ε, the restart strategy is performed to rebuild the current population. Finally, the decoding method transforms
e optimal individual (i.e., the optimal train departure sequence at station i′) into the rescheduled timetable with the
allest total train delay.

12
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Figure 6. A typical illustrative example of the PS-SEGA.

Table 2. Parameters of the model formulation.

Station Name li/km rmin
g,i /min

Beijing South 0 7
Yizhuang 22 5
Yongle 46 6
Wuqing 84 5
Nancang 108 7
Tianjin 120 NA

. Numerical experiments

To illustrate the advantage and effectiveness of PS-SEGA’s improvements, we set the partial station blockage in
e train timetable to generate typical scenarios. A comparative study is performed between PS-SEGA and the other
o efficient EAs and their improved variants also using PS-SEGA’s improvements. Furthermore, intensive numerical
periments are carried out to demonstrate the superiority of the encoding/decoding and hybrid initialization methods
PS-SEGA. The experiments run in Python on a computer with an Intel Core i7-9700T CPU @2.00 GHz with 16

B RAM.

.1. Scenarios setup

In the numerical experiments, we consider the train timetable of the Beijing-Tianjin high-speed railway. The
termediate stations along the railway line are Yizhuang, Yongle, Wuqing, and Nancang. Notably, Nancang is a
ecial railway station that does not handle passenger service and only divides block sections. Table 2 lists the

osition li of all stations and the minimum running time rmin
g,i in all block sections of the Beijing-Tianjin high-speed

ilway. The minimum dwell time smin
g,i is 2 min. The value of haa,min

g,g+1,i, hdd,min
g,g+1,i, and had,min

g,g+1,i are set to 5 min, 5 min, and
min, respectively.

As shown in Table 3, ten typical scenarios are installed at Beijing South with different station blockage durations.
he reason for selecting this station is that the affected trains can be accommodated at Beijing South and the nearby
lling stock depot. Depending on whether the blockage duration exceeds 30 min, the ten scenarios can be divided
to two quintessential types, i.e., five small disturbances No. 1–5 and five large disturbances No. 6–10. The other

13
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Table 3. Scenarios under the partial station blockage at Beijing South.

No. [tstart, tend) tblk/min Nblk Ncon

1 [6:00, 6:20) 20 4 5
2 [7:10, 7:21) 11 1 5
3 [8:40, 9:10) 30 5 9
4 [11:50, 12:20) 30 3 6
5 [13:30, 14:00) 30 3 8
6 [7:30, 8:25) 55 6 20
7 [10:20, 11:00) 40 5 13
8 [12:50, 14:10) 80 9 24
9 [16:30, 18:30) 120 14 36

10 [17:30, 19:10) 100 13 31

arameters in Table 3 include the time period [tstart, tend) under the partial station blockage, the blockage duration tblk,
e number of affected trains (Nblk) in [tstart, tend), and the number of considered trains (Ncon) inputting to EAs.

.2. Algorithms under comparison

Classical evolutionary algorithm frameworks in existing encoding, decoding, or population initialization methods
ardly provide rescheduling solutions in real time for the HSTR problem. Consequently, we propose an efficient evo-
tionary algorithm called PS-SEGA aiming at the characteristics of HSTR. To verify the advantage and applicability

f PS-SEGA for solving HSTR, we compare PS-SEGA and its competitors, i.e.,
SEGA [41]: Genetic algorithm (GA) is a renowned and well-regarded algorithm to address scheduling or opti-

ization problems. Some operations of choosing elite individuals can be performed for GA to improve its efficiency
2]. For example, strengthen elitist genetic algorithm (SEGA) is one of the most effective GA variants. Firstly,

EGA merges the parent individuals with the cross-variant individuals. Then, it selects the elite individuals from the
erged individuals [41]. This operation can increase the possibility of selecting the optimal elite individual in each
eration.

Differential Evolution (DE) [43]: Many researchers have established the HSTR model based on the same NP-
ard feature in the JSP problem [11, 44]. DE is a prevailing and efficient evolutionary algorithm to address the
ermutation-based JSP problem. Moreover, DE performs better than particle swarm optimization and its variants
5–47]. Therefore, DE is selected as the first compared evolutionary algorithm.

Evolution Strategy (ES) [48]: This is another efficient evolutionary algorithm that directly operates on the phe-
otype of the population. ES does not require modifying the gene. We choose (µ + λ)-ES to resolve HSTR [48]. The
alculation steps are as follows. Firstly, let µ parents of the current population produce λ individuals. Then, select

+ λ) individuals to participate in the competition. Finally, preserve µ optimal individuals.
The fundamental code of the three basic EAs (i.e., DE, SEGA, and ES) mentioned above has been provided by

zzbin et al. in a toolbox called Geatpy [49], which was implemented with Python programming language. Based on
eatpy, we perform different combinations of population initialization methods and restart strategies on the three basic
As to generate different improved EAs. To verify the optimality and efficiency of the improved EAs, we compare
e rescheduling solution calculated by the improved EAs and CPLEX in each scenario, respectively.

In addition, the two heuristics algorithms, First-Scheduled-First-Served (FSFS) [15] and the proposed EHS (see
ection 3.3), are presented to analyze the noticeable effect of reducing the total train delay using the improved EAs.
otably, the departure sequence calculated by FSFS is the same as that of the planned timetable.

Remark 4: Since SEGA and ES in Geatpy do not have the permutation-based encoding method, we employ an
genious method called random key to transform the continuous space to the permutation space [50]. In this way,
EGA and ES can be used in the permutation-based encoding method successfully.

To compare the performance of the improved EAs aforementioned, we perform 20 independent experiments in
ach scenario in Table 3. Beforehand, the most appropriate parameters of the three basic EAs and the two encoding

14
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Table 4. Parameters of two encoding methods and three evolutionary algorithms.

Parameter Value

Population size Npop 50

Maximum number of function evaluation 10000
NFEmax in the integer-based encoding

Maximum number of function evaluation 400
NFEmax in the permutation-based encoding

Predefined threshold ε for the restart strategy 0.02

Crossover rate pc for DE 0.5

Crossover rate pc for SEGA 0.7

Mutation rate pm for DE 0.5

Mutation rate pm for SEGA 0.5

Table 5. Abbreviations of encoding methods, population initialization methods and restart strategies.

Abbreviations Methods/Strategies

IN Integer-based encoding method
PE Permutation-based encoding method
RI Random initialization method
HI Hybrid initialization method
NR No restart strategy
HR Hybrid restart strategy

ethods require to be determined by sensitivity analysis. Therefore, we perform experiments under different param-
ter settings, i.e., Npop with 40, 45, 50, 55, 60, NFEmax in the integer-based encoding with 8000, 10000, 12000,
FEmax in the permutation-based encoding with 200, 400, 600, ε with 0.02, 0.04, 0.06, pc and pm with 0.5, 0.6, 0.7,

.8, 0.9. Table 4 lists the most appropriate parameters that can provide the best overall performance.

.3. Results analysis

This section compares the two encoding methods and different combinations of population initialization methods
ith restart strategies. To illustrate that PS-SEGA can provide better solutions than its competitors in solving HSTR,
e employ the Wilcoxon rank-sum test with a significance level of 5%. If one algorithm is superior to another

lgorithm on the objective value in comparison, S core equals 1. Otherwise, S core is 0.
For convenience, the abbreviations of encoding methods, population initialization methods, and restart strategies

re indicated in Table 5. Notably, since the population of the restart strategy involves an optimal individual and
ndom individuals, we also denote the restart strategy as the hybrid restart strategy (HR). Then, we can add suffixes
.e., the abbreviations in Table 5) to the three basic EAs (i.e., DE, SEGA, and ES) to represent different improved
As. For instance, PE-DE-RI-HR indicates differential evolution (DE) in the permutation-based (PE) encoding with
e random initialization method (RI) and the hybrid restart strategy (HR). With the hybrid initialization method (HI)

nd the hybrid restart strategy (HR), the proposed PS-SEGA can also be denoted as PE-SEGA-HI-HR.

.3.1. Comparison of different encoding approaches
To illustrate the effectiveness of the permutation-based encoding method in PS-SEGA, we only employ the random

itialization method (RI) without the restart strategy (NR) on SEGA in the permutation-based and integer-based
ncoding, respectively. In other words, we compare the performance of PE-SEGA-RI-NR and IN-SEGA-RI-NR.

15
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Table 6. Abbreviations of encoding methods, population initialization methods and restart strategies.

No. PE-SEGA-RI-NR IN-SEGA-RI-NR
val/min time/s val/min time/s

1 1080.0 ± 0.0 2.06 ± 0.05 NA 402.06 ± 2.94
2 304.9 ± 8.1 2.27 ± 0.13 NA 402.32 ± 2.75
3 2036.0 ± 0.0 3.81 ± 0.06 NA 500.87 ± 3.41
4 1096.0 ± 0.0 2.72 ± 0.12 NA 427.593 ± 3.57
5 1532.0 ± 0.0 3.56 ± 0.08 NA 471.64 ± 5.42
6 4754.9 ± 44.7 8.37 ± 0.15 NA 776.04 ± 29.22
7 2407.9 ± 8.3 5.00 ± 0.13 NA 598.26 ± 4.39
8 10323.8 ± 83.3 10.72 ± 0.40 NA 869.82 ± 11.85
9 22768.4 ± 229.6 15.582 ± 0.586 NA 1132.28 ± 14.34
10 18805.4 ± 84.1 12.00 ± 0.49 NA 1009.34 ± 7.87

NA: There is no feasible solutions in the current algorithm.

sing the above two algorithms, we perform experiments in the ten scenarios (Table 3). The objective value and
omputation time (in terms of the mean and standard deviation) are listed in Table 6. The best results are all marked

bold.
As for the objective value and computation time (Table 6), PE-SEGA-RI-NR in the permutation-based encoding

gnificantly outperforms IN-SEGA-RI-NR in the integer-based encoding in all scenarios. PE-SEGA-RI-NR can give
e HSTR solutions with 0 standard deviations in the four small disturbance scenarios (i.e., No. 1, No. 3, No. 4, and
o. 5). However, this does not mean that the above four scenarios are too simple because IN-SEGA-RI-NR cannot

ddress them at all. This result illustrates the great advantage of the permutation-based encoding method in PS-SEGA
ecause of the defined efficient search space based on the objective of HSTR. To further validate this advantage on
omputation time, we can see from Table 6 that IN-SEGA-RI-NR cannot address all ten scenarios in enough time.
his means that the integer-based encoding method’s search efficiency and solution quality are not ideal. It is difficult
obtain feasible solutions with enough function evaluation. However, PE-SEGA-RI-NR can address the same ten

enarios within 20 s. Overall, the permutation-based encoding method can efficiently address HSTR by defining an
fficient search space based on the feature and objective of the HSTR problem.

.3.2. Comparison of different combinations of population initialization methods and restart strategies
To verify the performance of the improvements in PS-SEGA, we perform different combinations of population

itialization methods and restart strategies 20 times on the three basic EAs (i.e., DE, SEGA, and ES). In terms of the
ean and standard deviation, the optimized objective value (val) and the computation time (time) of each improved
olutionary algorithm are all reported in Tables 7–9. The best results are all marked in bold. The parameter S core is

sed to measure the performance of each improved evolutionary algorithm. Because 120 comparisons will be made in
e Wilcoxon rank-sum test for each improved evolutionary algorithm, the maximum value of S core is 120. Since all
e improved EAs can provide the HSTR solution close to the optimal solution, there is not much difference in S core

f some improved EAs.
(1) As for DE and its improved variants (Table 7), PE-DE-HI-NR only performing the hybrid initialization method

btains the highest S core. This means the hybrid initialization method can improve the performance of DE. Instead,
e restart strategy (PE-DE-RI-HR’s S core is 21) reduces the performance of the no-improved DE (PE-DE-NI-NR’s
core is 24). This result means DE has a robust global search capability and does not necessarily use the restart
rategy.

(2) For SEGA and its improved variants (Table 8), the three improved SEGA (PE-SEGA-HI-NR, PE-SEGA-
I-HR, and PS-SEGA) can eliminate the standard deviation of the objective values in the scenarios of No. 2 and
o. 7. This means that the hybrid initialization method and the restart strategy can enhance SEGA’s performance
creasingly. Though the two improved EAs, PE-SEGA-HI-NR and PS-SEGA, have the same value of S core, PS-
EGA, using the restart strategy, obtains the minimum objective values in all ten scenarios. We can conclude that the
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Table 7. Comparison results on different combinations of population initialization methods and restart strategies on DE.

No. PE-DE-RI-NR PE-DE-HI-NR PE-DE-RI-HR PE-DE-HI-HR
val/min time/s val/min time/s val/min time/s val/min time/s

1 1080.0 ± 0.0 2.04 ± 0.07 1080.0 ± 0.0 1.94 ± 0.07 1080.0 ± 0.0 2.16 ± 0.07 1080.0 ± 0.0 2.15 ± 0.11
2 303.0 ± 0.0 2.23 ± 0.12 303.0 ± 0.0 2.06 ± 0.07 303.0 ± 0.0 2.20 ± 0.16 303.0 ± 0.0 2.06 ± 0.07
3 2036.0 ± 0.0 3.83 ± 0.07 2036.0 ± 0.0 3.63 ± 0.07 2036.0 ± 0.0 3.75 ± 0.15 2036.0 ± 0.0 3.78 ± 0.03
4 1096.0 ± 0.0 2.75 ± 0.11 1096.0 ± 0.0 2.64 ± 0.05 1096.0 ± 0.0 2.73 ± 0.06 1096.0 ± 0.0 2.71 ± 0.05
5 1532.0 ± 0.0 3.56 ± 0.09 1532.0 ± 0.0 3.49 ± 0.06 1532.0 ± 0.0 3.56 ± 0.04 1532.0 ± 0.0 3.53 ± 0.06
6 4725.6 ± 1.2 8.40 ± 0.12 4725.0 ± 0.0 8.30 ± 0.12 4726.2 ± 2.0 8.48 ± 0.09 4725.0 ± 0.0 8.24 ± 0.16
7 2406.0 ± 0.0 4.95 ± 0.14 2406.0 ± 0.0 5.10 ± 0.11 2406.0 ± 0.0 5.13 ± 0.08 2406.0 ± 0.0 5.12 ± 0.07
8 10208.2 ± 18.6 10.83 ± 0.39 10205.7 ± 16.1 10.87 ± 0.33 10221.8 ± 24.6 11.00 ± 0.35 10207.1 ± 16.8 10.78 ± 0.25
9 22657.1 ± 14.8 16.07 ± 0.55 22638.7 ± 7.7 15.88 ± 0.51 22669.2 ± 23.5 16.05 ± 0.66 22635.9 ± 10.7 15.73 ± 0.54
10 18682.7 ± 25.9 12.38 ± 0.45 18660.5 ± 21.3 11.94 ± 0.28 18676.1 ± 25.6 12.43 ± 0.34 18661.9 ± 20.0 12.31 ± 0.30

S core 24 31 21 30

Table 8. Comparison results on different combinations of population initialization methods and restart strategies on SEGA.

No. PE-SEGA-RI-NR PE-SEGA-HI-NR PE-SEGA-RI-HR PS-SEGA
val/min time/s val/min time/s val/min time/s val/min time/s

1 1080.0 ± 0.0 2.06 ± 0.05 1080.0 ± 0.0 2.02 ± 0.07 1080.0 ± 0.0 2.58 ± 0.16 1080.0 ± 0.0 2.55 ± 0.13
2 304.9 ± 8.1 2.27 ± 0.13 303.0 ± 0.0 2.08 ± 0.06 303.0 ± 0.0 2.51 ± 0.14 303.0 ± 0.0 2.41 ± 0.29
3 2036.0 ± 0.0 3.81 ± 0.06 2036.0 ± 0.0 3.63 ± 0.07 2036.0 ± 0.0 4.08 ± 0.08 2036.0 ± 0.0 4.11 ± 0.17
4 1096.0 ± 0.0 2.72 ± 0.12 1096.0 ± 0.0 2.62 ± 0.04 1096.0 ± 0.0 2.87 ± 0.04 1096.0 ± 0.0 2.88 ± 0.05
5 1532.0 ± 0.0 3.56 ± 0.08 1532.0 ± 0.0 3.52 ± 0.05 1532.0 ± 0.0 4.01 ± 0.04 1532.0 ± 0.0 3.98 ± 0.03
6 4754.9 ± 44.7 8.37 ± 0.15 4727.7 ± 0.9 8.30 ± 0.13 4727.0 ± 1.4 9.17 ± 0.08 4727.0 ± 1.4 9.25 ± 0.14
7 2407.9 ± 8.3 5.00 ± 0.13 2406.0 ± 0.0 5.15 ± 0.11 2406.0 ± 0.0 5.44 ± 0.22 2406.0 ± 0.0 5.53 ± 0.16
8 10323.8 ± 83.3 10.72 ± 0.40 10199.2 ± 30.6 10.33 ± 0.34 10224.5 ± 39.1 11.68 ± 0.39 10188.9 ± 11.8 11.57 ± 0.26
9 22768.4 ± 229.6 15.58 ± 0.59 22620.7 ± 28.0 15.23 ± 0.47 22760.6 ± 148.1 16.64 ± 0.92 22620.5 ± 19.4 16.92 ± 0.63

10 18805.4 ± 84.1 12.00 ± 0.49 18660.1 ± 40.0 11.27 ± 0.16 18727.0 ± 60.8 13.22 ± 0.53 18647.4 ± 25.7 12.98 ± 0.28
core 4 35 19 35

start strategy can improve SEGA’s performance. The most efficient improved variant of SEGA is PS-SEGA.
(3) As for ES and its improved variants (Table 9), PE-ES-HI-HR is superior to the other improved ES but not so

uch. The hybrid population initialization method and the restart strategy cannot improve ES significantly, which
eans the improvements of PS-SEGA are not all suitable for ES. Overall, the most efficient improved variants of DE,
EGA, and ES are PE-DE-HI-NR, PS-SEGA, and PE-ES-HI-HR, respectively.

All the improved EAs can provide optimized solutions in all of the ten scenarios in less than 1 min (Tables 7–9),
hich meets the real-time requirement of HSTR. ES and its improved variants perform the worst but has the least

omputation time in resolving HTRS. DE, SEGA, and their improved variants have a longer computation time, but
ll perform better. Besides, the objective values for each improved evolutionary algorithm have significant differences

the scenarios of No. 6, No. 8, No. 9, and No. 10. Hence, we select these four scenarios to draw the box plots,
s displayed in Figs. 7(a)–7(d). The data distribution of the objective value for all improved EAs can be seen in
ig. 7. The circle represents outliers of the objective values. The stability of the improved EAs can be known from
e box plots. For example, although there are also a few outliers in PE-SEGA under the four typical scenarios, the

istribution of the objective values in PS-SEGA is relatively concentrated compared with the other improved EAs.
e can conclude that PS-SEGA has the best stability.

.3.3. Convergence analysis
Similarly, we also choose the four typical scenarios (No. 6, No. 8, No. 9, and No. 10) to draw the average

bjective value of 20 independent experiments for each generation in all improved EAs, as shown in Figs. 8(a)–8(d).
he corresponding objective values in terms of the mean and standard deviation can be referred to in Tables 7–9.
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Table 9. Comparison results on different combinations of population initialization methods and restart strategies on ES.

No. PE-ES–RI-NR PE-ES–HI-NR PE-ES–RI-HR PE-ES–HI-HR
val/min time/s val/min time/s val/min time/s val/min time/s

1 1080.0 ± 0.0 1.42 ± 0.04 1080.0 ± 0.0 1.40 ± 0.05 1080.0 ± 0.0 1.77 ± 0.06 1080.0 ± 0.0 1.78 ± 0.11
2 303.0 ± 0.0 1.55 ± 0.11 303.0 ± 0.0 1.44 ± 0.05 303.0 ± 0.0 1.67 ± 0.11 303.0 ± 0.0 1.58 ± 0.08
3 2036.0 ± 0.0 2.39 ± 0.05 2036.0 ± 0.0 2.25 ± 0.06 2036.0 ± 0.0 2.40 ± 0.15 2036.0 ± 0.0 2.39 ± 0.28
4 1096.0 ± 0.0 1.83 ± 0.03 1096.0 ± 0.0 1.76 ± 0.045 1096.0 ± 0.0 1.888 ± 0.05 1096.0 ± 0.0 1.93 ± 0.07
5 1532.0 ± 0.0 2.30 ± 0.08 1532.0 ± 0.0 2.19 ± 0.05 1532.0 ± 0.0 2.36 ± 0.05 1532.0 ± 0.0 2.38 ± 0.05
6 4752.3 ± 16.7 4.89 ± 0.09 4748.6 ± 11.3 4.83 ± 0.08 4754.3 ± 14.7 4.78 ± 0.06 4749.3 ± 15.8 4.79 ± 0.06
7 2406.0 ± 0.0 3.04 ± 0.06 2406.0 ± 0.0 3.05 ± 0.06 2406.0 ± 0.0 3.03 ± 0.04 2406.0 ± 0.0 2.99 ± 0.05
8 10310.5 ± 15.9 5.95 ± 0.31 10298.9 ± 14.8 5.89 ± 0.23 10295.9 ± 11.1 6.13 ± 0.28 10303.8 ± 20.4 5.91 ± 0.25
9 22985.4 ± 76.7 8.76 ± 0.19 22900.9 ± 46.7 8.70 ± 0.21 23004.4 ± 116.5 8.76 ± 0.23 22902.1 ± 54.5 8.70 ± 0.18
10 18811.2 ± 29.4 7.11 ± 0.27 18789.6 ± 34.6 7.06 ± 0.27 18804.9 ± 21.9 7.17 ± 0.30 18787.2 ± 21.9 6.97 ± 0.25
core 0 3 1 4
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(d) Scenario No. 10

igure 7. Box plots for different combinations of population initialization methods and restart strategies on DE, SEGA and ES
nder four typical scenarios. All improved EAs in Tables 7–9 are numbered from 1 to 12, i.e., 1: PE-DE-RI-NR, 2: PE-DE-
I-NR, 3: PE-DE-RI-HR, 4: PE-DE-HI-HR, 5: PE-SEGA-RI-NR, 6: PE-SEGA-HI-NR, 7: PE-SEGA-RI-HR, 8: PS-SEGA, 9:
E-ES-RI-NR, 10: PE-ES-HI-NR, 11: PE-ES-RI-HR, 12: PE-ES-HI-HR.

e can further confirm that the optimal improved variants of DE, SEGA, and ES are PE-DE-HI-NR, PS-SEGA, and
E-ES-HI-HR, respectively. In addition, all the improved EAs using the hybrid initialization (i.e., the solid red line
nd dotted blue line) can accelerate the convergence speed in the early stage of EAs and are faster to acquire a better
lution. We can also clarify which optimal improved variant has the fastest convergence speed. For example, PS-

EGA (i.e., the dotted blue line) performing the hybrid initialization method and restart strategy converges faster than
e other improved variants of SEGA in all four typical scenarios.
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Figure 8. Convergence curves of average objective values on all improved EAs under four typical scenarios.
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.3.4. Most efficient evolutionary algorithm, PS-SEGA
According to the above analysis, we choose the optimal combination of population initialization methods and

start strategies on DE, SEGA, and ES to produce the three efficient EAs (i.e., PE-DE-HI-NR, PS-SEGA, and PE-
S-HI-HR). Then, we validate that PS-SEGA is the most efficient evolutionary algorithm from the three following
dicators, as shown in Fig. 9.

(1) Indicator 1: the degree of performance improvement. Compared with the three no-improved EAs (PE-DE-RI-
R, PE-SEGA-RI-NR, PE-ES-RI-NR), the degrees of performance improvement on PE-DE-HI-NR, PS-SEGA, and
E-ES-HI-HR under the PS-SEGA improvements are 7, 31 and 4, respectively. Therefore, PE-SEGA has the best
erformance improvement among the three efficient EAs.

(2) Indicator 2: the number of obtaining the minimum average objective value. As for the average objective value,
S-SEGA can obtain the minimum values (marked in bold in Table 8) in all scenarios compared with PE-DE-HI-NR
nd PE-ES-HI-HR.

(3) Indicator 3: the value of S core. From the results of Wilcoxon rank-sum test on the three efficient EAs (Tables
–9), the S core of PE-DE-HI-NR, PS-SEGA, and PE-ES-HI-HR are 31, 35 and 4, respectively. This means PS-SEGA
as the best performance. Therefore, PS-SEGA is the most efficient evolutionary algorithm among the three efficient
As.
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   1                                           2                                           3
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igure 9. Indicator comparison results of PE-DE-HI-NR, PS-SEGA, and PE-ES-HI-HR. The three indicators in horizontal axis are
umber from 1 to 3, i.e., 1: the degree of performance improvement, 2: the number of obtaining the minimum average objective
lue, 3: the value of S core.

.3.5. Rescheduled timetable in PS-SEGA
To verify the performance of PS-SEGA in reducing the total train delay, CPLEX, FSFS, and EHS are used to

ddress the ten scenarios (Table 3). Table 10 lists the optimized solution (i.e., the best departure sequence at the
lockage station), the optimized objective value (OOV, i.e., the total train delay), and the computation time. The best
sults are also marked in bold.

PS-SEGA can provide real-time solutions in all scenarios (Table 10). Firstly, with the CPLEX solution as a
ference, PS-SEGA can provide optimal solutions in the five small disturbance scenarios (No. 1–5). Notably, there
more than one optimal solution to the optimal objective value1. Because homogeneous trains have the same priority
the rescheduled timetable, the HSTR problem in numerical experiments is essentially a multi-model optimization

roblem.
In addition, the computation time in PS-SEGA is about the same as that by CPLEX in the five small disturbance

enarios (No. 1–5). In several scenarios (No. 3, No. 5), PS-SEGA computes faster than CPLEX. If we set a

1https://github.com/wrsBJTU/Paper/blob/main/trainDep.csv
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igure 10. Rescheduled timetables in the best departure sequences under four typical scenarios. The solid red line represents the
me period under the partial station blockage. The time horizons for the four typical scenarios are [440, 630], [760, 1020], [970,
350], [1035, 1380].

aller NFEmax, the computation time in PS-SEGA may be less than that in CPLEX in all five small disturbance
enarios. However, with an increase of the problem complexity, CPLEX fails to provide optimal solutions within 10
in (marked as NA in Table 10) in the last five scenarios (No. 6–10). So CPLEX is not suitable for partial station

lockage under large disturbances.
Then, we compare the optimized objective values between PS-SEGA and FSFS/EHS to verify the performance

f PS-SEGA. Hence, an indicator called relative percentage deviation (RPD) is defined to evaluate the effect of
inimizing the total train delay of PS-SEGA, i.e.,

RPD = (alg − bst)/bst (11)

here alg is the optimized objective value acquired by FSFS or EHS. The variable bst represents the minimum
bjective value (marked in bold in Table 10) calculated by PS-SEGA. RPD also indicates the gap between PS-SEGA
nd FSFS/EHS. Overall, the RPD results using FSFS to address the ten scenarios are 0%, 12.21%, 5.55%, 4.38%,
1.23%, 7.43%, 3.24%, 6.30%, 3.50%, 3.82%. These values indicate the effect of PS-SEGA in reducing the total train
elay. The RPD results of EHS in the ten scenarios are 0%, 12.21%, 3.14%, 0.36%, 9.79%, 4.66%, 1.58%, 3.73%,
.54%, 2.02%. Thus, we can conclude that EHS can provide the initial population with a solution close to the optimal
alue and better than FSFS.

Finally, the best departure sequences in all scenarios are selected by PS-SEGA. With the best departure sequences
nd the heuristic decoding method, Figs. 10(a)–10(d) present the rescheduled timetable under the four typical scenar-
s. The solid red line denotes the time period [tstart, tend) under the partial station blockage. We can conclude that the
ain not dwelling at the intermediate stations will depart earlier from the blockage station than the other trains. In
ther words, the more train stops at each station along the line, the later the train departs from the blockage station.
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able 10. Comparison results of the optimized solution, optimized objective value, and computation time in the four approaches.

No. Approach Optimized solution OOV/min Time/s

1

PS-SEGA 0, 1, 2, 3, 4 1080† 2.548 ± 0.125
CPLEX 0, 1, 2, 3, 4 1080† 1.624
FSFS 0, 1, 2, 3, 4 1080 <0.001
EHS 0, 1, 2, 3, 4 1080† <0.001

2

PS-SEGA 1, 2, 0, 3, 4 303† 2.414 ± 0.292
CPLEX 1, 2, 0, 3, 4 303† 1.478
FSFS 0, 1, 2, 3, 4 340 <0.001
EHS 0, 1, 2, 3, 4 340 <0.001

3

PS-SEGA 1, 3, 0, 5, 6, 2, 4, 7, 8 2036† 4.114 ± 0.174
CPLEX 1, 3, 0, 5, 6, 4, 2, 7, 8 2036† 6.185
FSFS 0, 1, 2, 3, 4, 5, 6, 7, 8 2149 <0.001
EHS 1, 3, 0, 2, 4, 5, 6, 7, 8 2100 <0.001

4

PS-SEGA 1, 2, 3, 0, 4, 5 1096† 2.880 ± 0.049
CPLEX 1, 2, 3, 0, 4, 5 1096† 2.006
FSFS 0, 1, 2, 3, 4, 5 1144 <0.001
EHS 1, 2, 0, 3, 4, 5 1100 <0.001

5

PS-SEGA 1, 3, 4, 0, 5, 6, 7, 2 1532† 3.979 ± 0.033
CPLEX 1, 3, 4, 0, 5, 6, 7, 2 1532† 4.950
FSFS 0, 1, 2, 3, 4, 5, 6, 7 1704 <0.001
EHS 1, 0, 2, 3, 4, 5, 6, 7 1682 <0.001

6

PS-SEGA 4, 5, 7, 6, 0, 9, 8, 3, 11, 2, 12, 1, 10, 14, 13 4725 9.249 ± 0.141
CPLEX NA NA NA
FSFS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 5076 <0.001
EHS 4, 5, 0, 2, 3, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14 4945 <0.001

7

PS-SEGA 0, 3, 5, 4, 1, 6, 7, 2, 8, 9, 10, 11, 12 2406 5.532 ± 0.160
CPLEX NA NA NA
FSFS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 2484 <0.001
EHS 0, 3, 4, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 2444 <0.001

8
PS-SEGA 2, 5, 7, 3, 9, 1, 10, 8, 12, 13, 14, 15, 16, 10186 11.571 ± 0.25611, 4, 18, 19, 20, 17, 21, 0, 6, 22, 23
CPLEX NA NA NA
FSFS 0, 1, . . . , 22, 23 10828 <0.001
EHS 2, 3, 5, 7, 1, 8, 4, 0, 6, 9, 10, . . . , 22, 23 10566 <0.001

9
PS-SEGA 12, 4, 9, 5, 11, 3, 13, 17, 18, 14, 8, 6, 1, 16, 19, 21, 2, 22, 23, 22595 16.924 ± 0.62815, 7, 24, 25, 26, 27, 10, 0, 28, 29, 30, 31, 20, 32, 33, 34, 35
CPLEX NA NA NA
FSFS 0, 1, . . . , 34, 35 23385 <0.001
EHS 3, 4, 5, 9, 11, 12, 1, 6, 8, 13, 2, 7, 0, 10, 14, 15, . . . , 34, 35 22943 <0.001

10
PS-SEGA 3, 5, 6, 12, 13, 10, 0, 2, 8, 16, 15, 17, 11, 7, 18, 20, 21, 18636 12.975 ± 0.28322, 19, 9, 23, 1, 24, 25, 26, 27, 4, 28, 29, 14, 30
CPLEX NA NA NA
FSFS 0, 1, . . . , 22, 23 19348 <0.001
EHS 3, 5, 6, 12, 0, 2, 7, 8, 10, 11, 1, 9, 4, 13, 14, . . . , 29, 30 19012 <0.001

†: Optimal objective value.
NA: CPLEX cannot obtain the optimal solution within 10 min.
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. Conclusion

This paper considers the HSTR problem under a partial station blockage. An ILP model is established based on
ain operation constraints to minimize the total train delay. An efficient evolutionary algorithm called PS-SEGA is
roposed to improve the efficiency and quality of the HSTR solution. The Wilcoxon rank-sum test results show that the
ermutation-based encoding method produces a remarkably better solution than the integer-based encoding method.
ith ten scenarios under the partial station blockage, a comparative study is performed on DE, SEGA, and ES in

ifferent combinations of population initialization methods and restart strategies. Compared with the most efficient
proved variants on DE and ES, PS-SEGA has proved to be the most efficient evolutionary algorithm. As for the

ve large disturbance scenarios in which CPLEX cannot provide the optimal solutions within 10 min, PS-SEGA can
rovide quasi-optimal HSTR solutions in real time. Finally, the best departure sequence and the corresponding total
ain delay are provided by PS-SEGA. The corresponding rescheduled timetable is obtained by the heuristic decoding
ethod.

The proposed PS-SEGA could be used as a function of the decision support system to help dispatchers reschedule
ains. In our further work, we will construct an efficient approach based on the advantages of PS-SEGA and RL

resolve HSTR. We will also incorporate more actual requirements to optimize the multimodality of HSTR or
ansform HSTR into a multi-objective optimization problem. Furthermore, we will modify PS-SEGA to apply in the
ooperative rescheduling problem of rolling stock and train rescheduling [51], and the integration of train timetable
nd passenger routing [52, 53]. In addition, the HSTR problem under uncertainty disturbances or disruptions using
As also be worth investigating [54–56].
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Highlights 

1. A high-speed train rescheduling model with time constraints is established. 

2. A permutation-based encoding method is proposed to improve solution 

efficiency. 

3. A heuristic decoding method is developed to eliminate all time constraints. 

4. Problem-specific knowledge is designed to provide an efficient rescheduling 

solution. 

5. Ten real-world cases are used to verify the effectiveness of the proposed 

algorithm. 
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