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Abstract 

Bunker fuel costs could account for 50–60 per cent of a ship's total operating cost in times of 

high fuel prices. The hedge against the volatility of bunker fuel price has contributed to 

shipping risk aversion. Despite the traditional minimum-variance hedging’s simplicity, this 

method has obvious disadvantages since the risk measure does not distinguish between loss 

and profit and equally penalizes both. Thus, we address this problem by buffered Probability 

of Exceedance (bPOE)，  conditional Value-at-Risk (CVaR) to control for the risk of 

shortfalls, compared with other objectives including minimum-drawdown deviation, 

minimum-standard deviation. We also study the methodology when solving the optimization 

problem to minimize bPOE by building the efficient frontiers with CVaR constraints.  Our 

findings are superior to the standard minimum-variance methods, and can be partly explained 

by the effect of estimation error and model misspecification.  

Keywords: Bunker fuel; minimum-variance hedging; expected loss; buffered Probability of 

Exceedance; conditional Value-at-Risk; drawdown deviation. 

1. Introduction 

As a subsystem in the global transportation and logistics network, shipping composes nearly 

90 per cent of international trade. Consequently, the shipping industry is highly susceptible to 

the fluctuations of the international economy (Alizadeh, 2004). It is estimated that bunker 

costs may accounts for more than half of the whole operational expense to shipping lines 

(Notteboom and Vernimmen, 2009, Shi et al., 2013). Thus, bunker risk aversion has become 

one of the most important vital issues in shipping industry in decades (Wang et al. 2013). 

At a tactical level, shipping companies purchase bunker derivatives in the futures or forward 

markets to control the volatile spot fuel prices (Menachof,2001, Plum et al., 2014, Ghosh et 

al., 2015). However, a lot of big losses in shipping industry occurred which make their 

strategies un-efficient. So there have been good reasons for management layer’s judgement 
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and their perception of risk. This unusual phenomenon is also found in the literature (Chng, 

2009, Mirantes et al.,2012, Pedrielli, 2015). From a theoretical perspective, the traditional 

objective of hedging is minimizing variance (Ederington, 1979, Wang et al., 2015).  However, 

minimum-variance hedging is optimal from a risk reduction perspective only when investors 

have quadratic utility or when returns are drawn from a multivariate elliptical distribution 

(Cao et al. 2010). In practice, neither of these assumptions is likely to hold. When investors 

have preferences over higher moments of returns, which is inconsistent with quadratic utility, 

variance is no longer an appropriate measure of risk since it ignores multivariate elliptical 

distribution. This leads to find new measures of risk and investors’ motivation.  

We address the problem of bunker hedging by minimizing conditional Value-at-Risk (CVaR), 

a quantile downside risk measure which is introduced by Rockafellar and Uryasev(2000, 

2002). In the context of hedging, Harris and Shen (2006) developed minimum-VaR and 

minimum-CVaR hedge ratios, estimated non-parametrically and semi-parametrically using 

historical simulation. The non-elliptical nature of return is particularly important in the 

hedging context because while minimum-variance hedging unambiguously reduces portfolio 

variance, it can actually increase negative skewness and kurtosis, leading to portfolios that are 

risker when measured by VaR or CVaR than when measured by variance. Kavussanos and 

Dimitrakopoulos (2011) investigate the medium-term market risk of ocean going tanker 

vessel freight rates based on VaR, finding that non-parametric models perform best in 

estimating VaR. In this paper, we also investigate the optimal bunker hedging strategy with 

other different deviation measures: standard deviation, drawdown and the traditional 

minimum-variance methods.  

In addition, we consider new variants of the bunker fuel hedge problem with downfall risks 

controlled by buffered Probability of Exceedance (bPOE), (Mafusalov and Uryasev, 2014-1, 

Uryasev, 2014-2). bPOE is a function closely related to the Probability of Exceedance (POE), 

which is the chance that the spot change amount is higher than the future change generated by 

the portfolio at least at one time period. bPOE is an extension of the so called Buffered 

Probability of Failure considered by Rockafellar and Royset (2010). We compare 

optimization problem statements in which risks are controlled by bPOE and by CVaR, 

respectively, and explore the important implication and the practical relevance of bPOE. The 

bPOE concept is introduced in the basic engineering context (reliability of component design), 

and this is the first exposure of this concept to the finance hedging optimization.  

It is important to note that constraints on bPOE and CVaR are equivalent in the sense 

explained later on in the paper. However, the problems of minimizing bPOE and CVaR are 

quite different. Minimizing bPOE is intended to reduce the probability of an undesirable 
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event. In this paper, the undesirable event is when portfolio hedging results 𝜸𝒕(𝒇𝒕+𝟏 − 𝒇𝒕) is 

below or only slightly above the change of spot price (𝒔𝒕+𝟏 − 𝒔𝒕) at some time moment. This 

event includes tail outcomes such that the average of the tail equals to the threshold. We 

conduct an empirical study demonstrating that the hedging problems with bPOE functions 

can be efficiently solved with convex and linear programming. The optimization was done 

with the Portfolio Safeguard (PSG) package (American Optimal Decisions, 2009). PSG 

provides compact and intuitive problem formulations and codes for solving risk management 

problems.  

This paper is organized as follows. We start with methodology. In Sections 2.1 we give the 

hedging strategy background. Then we define conditional VaR and buffered Probability of 

Exceedance in Section 2.2. With the help of PSG optimization package, we present 

approaches for control risks by CVaR-deviation, standard deviation, drawdown, deviation and 

bPOE in Section 3. In Section 4, we illustrate our model to a bunker hedge problem, then 

minimizing different portfolio risk objectives subject to an average error constraint or without 

it; empirical results of bPOE and its efficient frontiers are discussed in Section 4.2. Section 5 

provides concluding remarks and acknowledgements.  

2. Methodology  

2.1 Theoretical background 

Assume that a ship owner tries to hedge bunker fuel risk exposures. Consider the interactions 

among the bunker spot and derivatives prices, minimizing the traditional variance of the 

hedge portfolio would produce hedging errors. And whether the conceptual hedging errors are 

economically relevant is an empirical question to answer.  

At time , the ship must determine an optimal derivative position to minimize the risk of the 

positions of the underlying assets at time . And the risk of the hedged portfolio is 

measured by the variance of the hedged portfolio returns. Let 𝑠𝑡, 𝑓𝑡, be the prices of the spot 

and derivatives, and𝛾 𝑡 the hedge ratio at time . Then, ℎ𝑡+1is defined as the bunker hedge, 

andℎ𝑡 = (𝑠𝑡+1 − 𝑠𝑡) − 𝛾𝑡(𝑓𝑡+1 − 𝑓𝑡). Moreover, the variance of the hedged portfolio at time

, 𝑉𝑎𝑟(ℎ𝑡+1), is given by 𝑉𝑎𝑟(ℎ𝑡+1) = 𝑉𝑎𝑟(𝑠𝑡+1) + 𝛾𝑡
2𝑉𝑎𝑟(𝑓𝑡+1) − 2𝛾𝑡𝐶𝑜𝑣(𝑠𝑡+1, 𝑓𝑡+1). 

t

1t 

t

1t 
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By minimizing the variance, the OHR (Optimal Hedge Ratios) at time , i.e., 𝑟𝑡 , is 

determined by 

       𝛾𝑡
∗ =

𝐶𝑜𝑣(𝑠𝑡+1,𝑓𝑡+1)

𝑉𝑎𝑟(𝑓𝑡+1)
.                                                           (1) 

2.2 Defination of CVaR and bPOE 

Suppose a random variable L is the future loss (or the return with a minus sign) of some 

hedge. By definition, Value-at-Risk at level α is the α-quantile of L,  

    VaRα(L) = inf{{z|FL(z) > α}                                                       (2) 

where FL denotes Cumulative Distributions Function (CDF) of the random variable L. 

Conditional Value-at-Risk (CVaR) for a continuous distribution equals the expected loss 

exceeding VaR (Rockafellar and Uryasev,2002),  

                                         CVaRα(L) = E[L/L ≥ VaR∝(L)].                                                  (3) 

This formula justifies the name of CVaR as a conditional expectation. For general 

distributions, the definition is more complicated, and can be found in Rockafellar and 

Uryasev(2002).  

There are two probabilistic characteristics associated with VaR and CVaR. The first 

characteristic is the Probability of Exceedance (POE), which equals 1 minus CDF,  

                                          pz(L) = P(L > z) = 1 − FL(z).                                                     (5) 

By definition, CDF is the inverse function of VaR. The second probabilistic characteristic is 

called Buffered Probability of Exceedance (bPOE).  

                                          p̅z(L) = min
λ≥0

E[λ(L − z) + 1]+ , λ ≥ 0                                     (6) 

Formula (6) is considered as a property of bPOE, but it is convenient to use it as a definition, 

as in this paper (Uryasev, 2014). It has been proved that bPOE equals 1 − α on the interval EL 

< z < sup L, where α is an inverse function of CVaR, i.e., a unique solution of the equation  

              CVaRα(L) = z.                                                                           (7) 

where sup L is the essential supremum1 of the random value L.  

Therefore, bPOE equals the probability, 1 − α, of the tail such that CVaR for this tail is equal 

to z. The formula (7), to some extent, could be surprising; the expression does not 

t
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immediately come across as a probability of some event and it is not obvious that the value 

belongs to the interval [0, 1] for any real value z.  

At the point z = sup L, the solution of equation (7) may not be unique. For z = sup L, the 

smallest solution equals 1 − P (L = z). The formula (6) corresponds to this smallest solution  

p̅z=supL(L) = max{1 − α|CVaRα(L) = z}.                                           (8) 

So bPOE  corresponds to the largest value for 1 − α.  

The largest solution of equation (8) at the point z = sup L equals α = 1, which corresponds to 

the smallest value of 1 − α = 0, i.e.  

                                   0 = min{1 − α|CVaRα(L) = z}.                                                          (9) 

                          

3. Controlling risks by CVaR-Deviation, Standard Deviation, Drawdown_Deviation and 

bPOE 

We investigate the optimal bunker hedging strategy with the fowllowing different deviation 

measures: standard deviation, CVaR deviation, dawndown deviation, bPOE and Variance.  

Minimize CVaR_Dev (minimizing 90%-CVaR deviation),where it equals to CVaR Deviation 

for Loss. It is similar with standard deviation, drawdown, and variance. 

Then we minimize bPOE. The maximum loss function, L = max0≤t≤N Lt, depends upon a set 

of decision vectors, x1, ..., xN . Let us combine these vectors in one decision vector ⃗x = 

(x1, ..., xN ). Let us consider a general linear loss function Lt(⃗x) = (⃗at)
T ⃗x + bt with random 

coefficients ⃗at. Then, (8) implies p ̄z(L)=minE[λ(max Lt −z)+1]
+ 

=minE[λ max{(⃗at)
T

⃗x+bt 

−z}+1]
+

. λ≥0 0≤t≤N λ≥0 0≤t≤N. 

The minimization problem for bPOE w.r.t. ⃗x can be written as follows,  

                         minp ̄z(L)= minE[λ max{(⃗at)
T

⃗x+bt −z}+1]
+                                           (10)           

 

                            ⃗x ⃗x,λ≥0 0≤t≤N = min E[ max {(⃗at)
T 

λ⃗x + λ(bt − z)} + 1]
+

.                   

(11) 

⃗x,λ≥0 0≤t≤N By replacing the term λ⃗x with ⃗y in the last equation we get the optimization 

problem with respect to variables ⃗y, λ,  
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                          min E[ max {(⃗at)
T 

⃗y + λ(bt − z)} + 1]
+ 

. ⃗y,λ≥0 0≤t≤N                          (12) 

Further, we suppose that coefficients, ⃗at, are random vectors with finite discrete dis- tribution, 

and the random loss function Lk
t (⃗x) = (⃗ak

t )T ⃗x + bk
t has scenarios k = 1, ...K with 

probabilities pk = 1/K. By using new variables ⃗y,λ we rewrite problem (12) as follows,  

    
y, 0

1

min max 1
K

T
k k

k t t
t N

k

p a y b z





 


   
  

                                (13) 

        min pkuk                                                    (14)  

                                                                               y,λ,⃗u k=1  

                                                                 subject to   

                                                                 

                                                                 

The objective in (13) is called partial moment with threshold -1 of the random function

    
0
max .

T
k k

t t
t N

L a y b z
 

    This objective function is a piecewise linear convex function 

w.r.t. the variables ⃗y and λ . The problem (13) can be reformulated as a Linear Programming 

(LP) problem. Let us introduce an additional vector of decision variables ⃗u = (u1 , ..., uK ). 

Problem (13) is equivalent to the following LP, 

                                                              
y, ,

1

min
K

k k
u

k

p u





                                                          (15)

 

                                                               subject to  

                                              

                                               

                                                 

                                                𝐿 = 𝑆𝑡+1 − 𝛾𝑡𝑓𝑡+1 

𝑀𝑖𝑛𝑏𝑃𝑂𝐸(𝑧, 𝐿) = 𝑝𝑦(𝐿)                                                        (16) 

0 0 0Tp y d 

0, 0, 0,..., .ty t N   

    1, 0,..., , 1,..., ,
T

k k

k t tu a y b z t N k K     

0 0 0,Tp y d 

0, 0, 0,..., , 0, 1,..., .t ky t N u k K     
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                                                        subject to  

𝛾𝑡 ≥ 0 

𝐸(𝐿) ≥ 𝑑 

Then 𝑝𝑧(𝐿) = min
𝜆≥0

𝐸[𝜆(𝐿 − 𝑧) + 1]+ = min
𝜆≥0

𝐸[𝜆(𝑜𝑠 − ℎ𝑜𝑓 − 𝑧) + 1]+ = min
𝜆≥0

𝐸[𝜆(𝑜𝑠 − 𝑧) −

𝜆ℎ𝑜𝑓 + 1]+.  Replace 𝜆ℎ = 𝑦 

min
ℎ

𝑝𝑧(𝐿) = min
ℎ,𝜆≥0

𝐸[𝜆(𝑜𝑠 − 𝑧) − 𝜆ℎ𝑜𝑓 + 1]+                               (17) 

= min
𝑦,𝜆≥0

𝐸[𝜆(𝑜𝑠 − 𝑧) − 𝑦𝑜𝑓 + 1]+ 

We suppose that the loss function 𝐿 = 𝑜𝑓 − ℎ𝑜𝑠 has scenarios k=1,…,K with probalitities 

pk=1/K. The model can be rewrite as follows: 

min
𝑦,𝜆

∑ 𝑝𝑘[𝜆(𝑜𝑠 − 𝑧) − 𝑦𝑜𝑓 + 1]+𝐾
𝑘=1                                      (18) 

                                              Subject to 

∑ 𝑝𝑘(𝜆𝑜𝑠 − 𝑦𝑜𝑓)

𝐾

𝑘=1

≥ 𝜆𝑑 

𝜆 ≥ 0 

𝑦 ≥ 0 

This problem can be reformulated as a Linear Programming (LP) problem. An additional 

vector of decision variables u=(u1,u2,…,uk). The problem is equivalent to the following LP. 

min
𝑦,𝜆,𝑢

∑ 𝑝𝑘𝑢𝑘
𝐾
𝑘=1                                                                (19) 

                                                 Subject to 

𝑢𝑘 ≥ 𝜆(𝑜𝑠 − 𝑧) − 𝑦𝑜𝑓 + 1, 𝑘 = 1, … , 𝐾 

∑ 𝑝𝑘(𝜆𝑜𝑠 − 𝑦𝑜𝑓)

𝐾

𝑘=1

− 𝜆𝑑 ≥ 0 

𝜆 ≥ 0 

𝑦 ≥ 0 

𝑢𝑘 ≥ 0, 𝑘 = 1, … , 𝐾 
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4. Empirical study  

4.1.Data 

The data set includes weekly spot price for IFO 180 heavy oil, weekly settlement prices 

of 1-month futures contracts on IFO 180 at Singapore Exchange, which are collected 

from Bloomberg. The data are from January 2011 to January 2017. Table 1 reports a set 

of preliminary statistics for the returns of spot and future IFO 180. First, the same mean 

and standard deviation show the relatively high liquidity of spot and future markets. 

Second, the skewness and kurtosis statistics suggest that return distribution is left skewed 

and fat tailed in two time series. Third, the Jarque and Bera (J-B) test confirms the fat-

tailed distributions in two markets by rejecting the null hypothesis of a Gaussian 

distribution at the 1% significance level. The Q-statistics for the autocorrelation of 

returns and squared returns show that the null hypothesis of non-autocorrelation is 

rejected for the two markets. Furthermore, the F-statistics of the ARCH test explain an 

ARCH effect in the spot and future IFO 180 markets.  

Table 1 – Summary statistics of returns of spot and future IFO 180  

  T Mean (%) Std. dev. Skewness Kurtosis J-B test LB Q(12) ARCH(12) 

RS 312  -0.147  0.109  -1.085  20.150  5161.8***  18.727 *** 10.197 *** 

RF 312  -0.147  0.109  -1.081  20.082  5161.6 *** 18.728 *** 10.197 *** 

 

4.2. Hedging Results 

We estimate two groups: one has constraint that the average residual error is equal to 

zero and the other is without the constraint. Table 1 reports the sample performance of 

the eight different objectives with and without constraints hedging strategies for the 

bunker portfolios. In each table it reports the average estimated hedging ratio, objective 

value, loss, CVaR deviation, mean absolute deviation, standard deviation, VaR 99%. In 

all cases, the standard deviation is significantly reduced reflecting the relatively high 

correlations between the spot and futures series. In contrast with the diversification 

effects on standard deviation, in two of the eight cases, the loss of the hedge portfolio is 

more than the other six cases. The largest increase in hedge is the Drawdown method 

with the constraint. On average across the eight cases, standard deviation reduced by 

5.293, but the loss increases by 10.28. The consequence is that in terms of CVaR, the 

reduction in standard deviation that arises from hedging is offset by an increase in mean 

absolute deviation in four of the eight cases and hence the reduction in CVaR is less than 

the reduction in standard deviation. In deed, in this case, minimum-variance hedging 

actually increases CVaR. By minimizing the drawdown deviation, we obtained the best 

values for all these considered eight risk measures. Minimization of CVaR deviation 

leads to good results, whereas minimization of standard deviation gives the worst level for 
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the rest downside risk measures. And results with the constraint are not obviously better than 

without the constraint.  

Table 2 – A comparison between different methods  

Method Constraint   HR Loss CVaR_Dev Meanabs_Dev St_Dev VaR 

CVaR_Dev Yes 1.009 1.42e-14 0.865 0.226 0.500 -0.205 

CVaR_Dev No 1.011 6.99e-15 0.856 0.231 0.490 -0.092 

St_Dev Yes 0.999 16.222 9.019 2.763 5.296 4.360 

St_Dev No 1.002 16.223 8.927 2.738 5.287 5.353 

Min-Variance  Yes 0.993 28.054 9.019 2.763 5.296 4.367 

Min-Variance No 1.002 26.311 8.927 2.738 5.282 5.354 

DrawDown  Yes 1.001 0 24.143 1.423 16.221 -24.608 

DrawDown No 1 0.00001 23.986 1.345 16.233 -32.178 

Notes: The table reports the average hedging ratio, Loss,  

4.3. bPOE results 

In order to solve the optimization problems, we use the Portfolio Safeguard package to 

calculate bPOE results. From equation (10) to equation (19), we show that with the fixed 

parameter z, coinciding parts of the efficient frontiers can be generated with parameter 𝛼 in 

equation (15). Figure 1 gives a frontier by solving problem bPOE for a serios of values of 

parameter d in equation 18. The figure contains the calculated values for bPOE and the bound 

on average loss. The results suggest that bPOE minimization can be solved very efficiently.  

5. Conclusion 

Maritime bunker hedging is one of the most important issues in the shipping industry. The 

traditional minimum-variance method ignore the small probability however large loss which 

made a lot of shipping companies’s hedging strategies un-effective. Therefore, we propose 

different objective models including CVaR, Standard deviation, drawdown and bPOE 

methods, taking average error into account. In addition, this paper presents several results 

about the equivalence of different efficient frontiers. Theoretically, the minimization problem 

for bPOE can be solved by building the efficient frontier with CVaR constraints and finding 

the inverse solution corresponding to the threshold. The study suggests that bPOE and CVaR 

minimization problems can be solved very efficiently for shipping risk management and 

portfolio optimization. 
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 Figure 1 – Efficient frontier: bound on average loss vs. minimal bPOE 
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