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Abstract: The operation and maintenance of railway signal systems create a significant and complex 

quantity of text data about faults. Aiming at the problems of fuzzy entity boundaries and low accuracy 

of entity recognition in the field of railway signal equipment faults, this paper provides a method for 

entity recognition of railway signal equipment fault information based on RoBERTa-wwm and deep 

learning integration. First, the model utilizes the RoBERTa-wwm pretrained language model to get the 

word vector of text sequences. Second, a parallel network consisting of a BiLSTM and a CNN is 

constructed to obtain the context feature information and the local attention information, respectively. 

Third, the feature vectors output from BiLSTM and CNN are combined and fed into MHA, focusing 

on extracting key feature information and mining the connection between different features. Finally, 

the label sequences with constraint relationships are outputted in CRF to complete the entity 

recognition task. The experimental analysis is carried out with fault text of railway signal equipment 

in the past ten years, and the experimental results show that the model has a higher evaluation index 

compared with the traditional model on this dataset, in which the precision, recall and F1 value are 

93.25%, 92.45%, and 92.85%, respectively. 

Keywords: railway signal equipment; fault text; name entity recognition; RoBERTa-wwm; deep 

learning; knowledge graph 
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1. Introduction  

Railway signal equipment is a general term for signal display equipment, station interlocking 

equipment, and section blocking equipment. It is a crucial guarantee to ensure the safety of train and 

operation shunting work, as well as to improve the traffic capacity of the railway [1]. With the rapid 

and efficient development of information technology, a large amount of unstructured text data about 

faults is generated by the railway signal system during operation and maintenance. To handle faults, 

maintenance staff mainly relies on manual experience and expert knowledge. Due to less experience, 

poor communication and delayed fault processing time, this kind of maintenance may lead to major 

safety hazards and an inability to meet the demands of the high-speed operation of modern railways in 

China. Therefore, it is a major challenge to determine how to make reasonable use of the fault 

information generated at the railway site, mine the potential relationship between fault text, and assist 

the field personnel to quickly solve the various fault phenomenon occurring at the scene. 

The knowledge graph (KG) is a technical approach that utilizes graphical models to describe 

knowledge and represent the associative relationships between entities [2]. Knowledge graphs are used 

to make information resources easier to compute, understand, and evaluate, enabling rapid responses 

and reasoning with knowledge. The knowledge graph is primarily categorized into two types: the open 

domain knowledge graph and the vertical domain knowledge graph. The knowledge graph for railway 

signal equipment faults belongs to the vertical domain knowledge graph with strong domain 

characteristics and strict requirements for knowledge content, and is closely related to safety, which 

can provide auxiliary decision-making for intelligent fault diagnosis and prediction. 

Named Entity Recognition (NER), as one of the significant parts of constructing knowledge 

graphs, uses related models to locate and classify named entities in text into certain labeled categories [3]. 

Given that the majority of fault information in railway signal equipment is in the form of unstructured 

text data, it is crucial to initially identify specific categories of entities through NER. This is done to 

facilitate the creation of a knowledge graph and other associated activities. Compared with other fields, 

entity recognition in the field of railway signal equipment fault is characterized by many proper names, 

fuzzy entity boundaries and rich entity expressions [4]. To recognize different types of entity 

information, this paper proposes a model based on RoBERTa-wwm and deep learning integration 

(referred to as the RBCMC multilayer model). The core idea is presented in the following four points: 

(1) After sorting the fault texts of railway signal equipment, the features of the text data are 

summarized to define five kinds of entity labels, such as fault phenomenon, fault reason, repair 

measure, and repair outcome. The BMEO method then uses the YEDDA [5] labeled tool to annotate 

each character in the fault text. 

(2) To obtain a vector representation of the text's rich semantic information, the RoBERTa-wwm 

pretrained language model processes the labeled fault text. The RoBERTa-wwm model not only 

enhances the semantic representation by obtaining many prior knowledge unlabeled, but also obtains 

word-level semantic representations during the training process. A neural network consisting of a 

Bidirectional Long Short-Term Memory (BiLSTM) and a Convolution Neural Network (CNN) 

working in parallel is constructed to extract the contextual feature information and local feature 

information of the text, respectively. 

(3) The Multi-Head Self-Attention mechanism (MHA) is used to mine the association between 

different features and extract feature vectors that contain other words. By defining the number of heads 

of the MHA, features are extracted from different dimensions, and these features are processed by 
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splicing to improve the model recognition ability. 

(4) The experiments conducted on fault data from railway signal equipment have shown that the 

model proposed in this paper, which combines RoBERTa-wwm and deep learning, is highly suitable 

for entity recognition in the field of railway signal equipment faults. The precision, recall, and F1 values 

achieved were 93.25%, 92.45% and 92.85%, respectively. 

2. Related work 

Analyzed from state-of-the art of research algorithms, the current entity recognition methods are 

divided into the following three main types: 

2.1. Rule and dictionary approach 

This kind of approach first needs to construct many entity extraction rules, which are generally 

constructed manually by experts with specific domain knowledge, and then the rules are matched with 

text strings to recognize named entities [6]. Although the accuracy and recall of the method are 

generally high, it becomes more difficult to adapt to emerging entity types as the rule set construction 

cycle lengthens with increasing dataset size.  

2.2. Traditional machine learning based approach 

This approach based on commonly used machine learning models includes Hidden Markov 

Models (HMM) [7], Maximum Entropy Models (ME) [8] and Conditional Random Field (CRF) [9]. 

Although this method is more effective than the first, it has the disadvantages of high requirements for 

text extraction features and strong interdependence between predicted labels.  

2.3. Deep learning based approach 

With the significant progress of deep learning in the field of natural language processing in recent 

years, deep neural networks have been successfully applied to NER tasks. At present, the neural 

networks used for NER mainly include CNNs, Recurrent Neural Networks (RNN) and neural networks 

that contain an attention mechanism. Neural networks can automatically learn sentence features and 

achieve end-to-end entity recognition without complex feature engineering [10]. Huang [11] proposed 

various sequence labeling models based on LSTM networks, among which the BiLSTM-CRF model 

achieved state-of-the-art accuracy on the NER dataset. Yang [12] generated word vectors 

corresponding to the labeled sequences through Word2vec [13] and used the BiLSTM-CRF model to 

complete the task of railway accident fault NER by loading the knowledge from an external sources, 

namely Wikipedia. Kong [14] constructed a multilayer CNN model that can capture short-term and 

long-term contextual information and make full use of CPU parallelism to improve model efficiency 

compared with LSTMs. Li [15] used a parallel structure of MHA and BiLSTM neural networks to get 

feature representation. They combined a medical dictionary and a language model that had already 

been trained to combine character and word vectors. 

In recent years, the emergence of pretrained language models (PLMs) has created more 

possibilities for the enhancement of text feature representation. Devlin [16] first proposed Bidirectional 



1231 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1228–1248. 

Encoder Representations from Transformers (BERT) to pretrain models, generate word vectors 

containing positional information and incorporate contextual features into word vectors through the 

bidirectional transformer model. In addition to this, PLMs such as Generative Pre-Training (GPT) [17], 

Enhanced Language Representation with Informative Entities (ERNIE) [18] and A Lite BERT 

(ALBERT) [19] perform well in terms of feature representation. The BERT model has been widely 

used in the field of NER tasks. Guo [20] proposed the BERT-BiLSTM-CRF legal case entity 

recognition method for the characteristics of domestic Chinese legal texts, but only the location and 

the name of the person in the legal text are labeled accordingly, lacking other elements. To enrich 

character vectors, Li [21] mixed multi-source participle information with global vocabulary 

embedding information based on BERT-BiLSTM-CRF. The model works better when it comes to crop 

diseases and insect pests. Lin [22] introduced MHA to focus on key feature information, and the 

proposed BMBC model was able to accurately identify various types of entities in high-speed rail 

turnout information. Ma [23] proposed a LSTM-CRF and CNN serial strategy for sequence labeling 

model applied to an NER task, which obtained high evaluation indexes on the Conll2003 English 

dataset, but the LSTM network was unable to capture textual information in both directions. However, 

there is no separator between words in Chinese, and BERT can only mask characters but not words 

when using the Chinese corpus for pretraining, so word-level semantic representations cannot be 

obtained through pretraining. To address the shortcomings of the BERT model, the RoBERTa model [24] 

was proposed, which uses more training data, a longer training time, more powerful training batches 

and combines the benefits of the Chinese whole world mask (wwm) and the RoBERTa model. To take 

full advantage of the pretrained layers of the encoder, Zhang [25] designed a method of representing 

the dynamic weight fusion of the vectors generated by the 12 layers of the transformer of the 

RoBERTa-wwm, which is used as an input to underlay the BiLSTM network. 

Most of the deep learning based on NER models proposed by the above scholars use a single 

neural network. This paper not only proposes to use a parallel combination of BiLSTM and CNN 

feature extraction networks to get the contextual features of the fault text, but also introduces an MHA 

after the network to tap into the association between different features and extract the feature vector 

containing other words. 

Compared to traditional word vector representation, the BERT series of models can do 

bidirectional modeling by using a deep transformer architecture. This lets the context of the word be 

taken into account at the same time to get more complete contextual information. RoBERTa-wwm is 

specifically designed for Chinese data, where words lack separators, and BERT cannot mask words 

during pretraining. It employs the whole word mask and dynamic mask strategy to learn distinct 

linguistic representations, making it more appropriate for identifying fault information in Chinese 

railway signal equipment. 

3. Corpus construction 

Fault data of railway signal equipment is stored in text form by recording and summarizing the 

fault phenomena, cause analysis, processing and processing results. This gives a more complete record 

of the signal equipment faults that happen in detailed information [26].  

The goal of entity recognition for fault information of railway signal equipment is to extract all 

kinds of entity information from fault text and classify different types of entities, such as fault 

phenomenon, fault reason, and repair measure. In this paper, entity recognition is regarded as a 
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sequence annotation task by labeling each Chinese character in the text and identifying the beginning 

and ending items in the sentence to extract named entities. This process effectively avoids the 

accumulation of errors caused by word separation and realizes the extraction and classification of 

entity information [27]. 

A given signal equipment fault text 𝑋𝑠 of length n is denoted as 𝑋𝑠 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛}, where 𝑥𝑖 

represents the i-th character. After the RBCMC multilayer model, the label sequence 𝑌𝑠 corresponding 

to each text character is obtained, where 𝜑() represents the nonlinear mapping in the entity model, 

the length of 𝑌𝑠 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} is the same as 𝑋𝑠 and 𝑦𝑖 represents the label corresponding to the  

i-th character. 

 𝑌𝑠 = 𝜑(𝑋𝑠) (1) 

Analyzing the characteristics of text data about faults, this paper defines the five entity types 

shown in Table 1, which are fault phenomenon, fault position, fault reason, repair measure, and repair 

outcome. In addition to covering the whole process of fault diagnosis, these five entity categories also 

lay the foundation for subsequent relationship extraction tasks. 

The fault text is labeled by the BMEO method through the YEDDA labeled tool, where B denotes 

the beginning of the entity position, M the middle of entity position, E the end of entity position, and 

O the nonentity character, and it connects to the defined entity type with “-”. Each entity tag represents 

the entity type and the position of the character in the entity. 

Table 1. Definitions of entity type. 

Number Name of entity Labeling tag 

1 fault phenomenon Phe 

2 fault position Pos 

3 fault reason Rea 

4 repair measure Mea 

5 repair outcome Out 

4. Entity recognition of railway signal equipment fault information 

In this paper, a model based on RoBERTa-wwm and deep learning integration is proposed for the 

entity recognition on fault information of railway signal equipment, and the overall structure of the 

model is shown in Figure 1, which mainly contains four layers: the RoBERTa-wwm layer, the 

BiLSTM-CNN layer, the MHA layer, and the CRF layer. 

First, under the condition of fully considering the relational features between characters, words 

and sentences, the text data is fed into the RoBERTa-wwm embedding layer so that the original fault 

text is converted into a vector representation to facilitate the learning of the subsequent CNN and 

BiLSTM neural networks. Then, to fully extract the local feature vectors 𝐶𝑡 and contextual feature 

vectors 𝐻𝑡 of the text, the vectors generated by the RoBERTa-wwm layer are used as inputs to CNN 

and BiLSTM. After fusing the features of the two, the MHA layer mines the internal relationship 

between different features to obtain text features with different granularities, and finally the optimal 

labeled sequence with constraints is outputted in the CRF layer. 
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Figure 1. Overall structure of the model in this paper. 

4.1. RoBERTa-wwm layer 

To address the issue of multiple meanings of a word, the BERT model adds word position 

information, improving entity recognition accuracy [28]. The two core tasks performed by the BERT 

model, which is based on the bidirectional transformer encoder, are the Masked Language Model 

(MLM) and Next Sentence Prediction (NSP). The principle of MLM is that the word to be predicted 

is first randomly replaced with the label [MASK] in a certain proportion (15%), and then the original 

value of the word is predicted according to other non-masked words provided in the context. The NSP 

model is primarily trained to understand the relationship between sentences. 

RoBERTa-wwm is an improvement to the BERT model; its framework is consistent with BERT, 

and it improves accuracy by 5% to 20% over BERT [29]. RoBERTa-wwm makes three improvements 

on the BERT model: (1) The pretraining process uses a dynamic masking strategy, which creates a 

unique mask for each input sequence. The input data is more randomly generated, allowing it to learn 

more semantic information. (2) The NSP task is removed, which enhances the model’s efficiency to 

some extent. (3) Byte-Pair Encoding (BPE) is used to process text data.  

The pretraining process of RoBERTa-wwm is shown in Figure 2, where the input data is first 

processed in a specific format, and where the labels [CLS] and [SEP] represent the start and end 

positions of the text, respectively, and some characters in the text are randomly masked using the label 

[MASK] [16]. The text sequence corresponds to an input that consists of a superposition of three 

different embedding features, namely token embedding, segment embedding, and position embedding. 

Word vectors are trained using the encoder portion of the bidirectional transformer by RoBERTa-

wwm, which more comprehensively retains the semantic information of the fault text, enhances the 

model’s contextual bidirectional feature capture capability, solves the problem of multiple meanings 
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of a word, and theoretically improves the accuracy of the entity recognition model [30]. 
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Figure 2. The procedure of RoBERTa-wwm generating input vectors. 

4.2. BiLSTM-CNN layer 

This paper proposes a parallel network consisting of BiLSTM and CNN for feature extraction. In 

the previous layer, the RoBERTa-wwm language model pretrained feature vectors were sent to the 

BiLSTM and CNN networks to pull out contextual and local features of the fault text. Subsequently, 

the two features are combined and input into the MHA layer for further processing. 

4.2.1. BiLSTM 

Recurrent neural networks (RNNs), which address text sequences as directed graphs and can 

capture historical dependencies through internal feedback connections [31-32], are well suited for 

capturing contextual information about fault text. However, traditional RNNs have the problems 

gradient vanishing and gradient explosion during the training process. Long Short-Term Memory is 

proposed to solve the above problems. 

LSTM is a kind of RNN network model with a gating mechanism that can learn the long-term 

dependency relationship between sequences and present a better effect in text processing. LSTM 

consists of a forgetting gate, an input gate and an output gate, and its structure is shown in Figure 3. 

First, the content to be discarded in the previous cell is decided by the forgetting gate, which 

receives the output of the previous moment ℎ𝑡−1 and the input of the current moment 𝑥𝑡, and the 

result 𝑓𝑡 of the forgetting gate at the moment t is shown in formula (2), where 𝑊𝑓 denotes the weight 

matrix of the forgetting gate, which is divided into two parts: 𝑊𝑥𝑓  denotes the weight matrix 

corresponding to the transmission of input 𝑥 to 𝑓𝑡, 𝑊ℎ𝑡−1𝑓 denotes the weight matrix corresponding 

to the transmission of the previous state ℎ𝑡−1  to 𝑓𝑡  and 𝑏𝑓  denotes the matrix of bias terms. The 

result 𝑓𝑡 is bounded to (0,1) by the activation function 𝜎. 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 



1235 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1228–1248. 

tanh

1tC − tC

1th −

ti to

th

σ

+

tf ×

tanhσ

×

σ

tx

×

 

Figure 3. The internal structure of LSTM. 

The input gate controls the information that needs to be added to this cell and is calculated as 

shown in formulas (3) and (4), where 𝑊𝑖 denotes the weight matrix of the input gate, 𝐶𝑡 is the cellular 

state of the LSTM at moment t and the forgetting gate 𝑓𝑡  is multiplied with the state 𝐶𝑡−1  of the 

previous moment to achieve the effect of selective forgetting. 

 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡 tanh( 𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

The output gate is used to decide which information can be used as the output of the current stage 

and is calculated as shown in formulas (5) and (6), where 𝑊𝑜 denotes the weight matrix of the output 

gate and 𝑏𝑜 denotes the bias term matrix. Multiplying the output gate 𝑜𝑡 with tanh(𝐶𝑡) yields the new 

output content ℎ𝑡 at the current moment, which is used as one of the input contents at the next moment. 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡) (6) 

BiLSTM consists of a forward LSTM and a backward LSTM. Forward and backward propagation 

occur through the front and back of both LSTM directions, respectively. The forward propagation of 

the LSTM is utilized to generate the forward hidden layer state sequence 𝐻𝑡
⃗⃗⃗⃗ = [ℎ1

⃗⃗⃗⃗ , ℎ2
⃗⃗⃗⃗ , … , ℎ𝑛

⃗⃗ ⃗⃗ ]  along 

with the backward hidden layer state sequence 𝐻𝑡
⃖⃗ ⃗⃗⃗ = [ℎ1

⃖⃗⃗⃗⃗, ℎ2
⃖⃗ ⃗⃗⃗, … , ℎ𝑛

⃖⃗ ⃗⃗⃗]. The hidden layer state sequence 

generated in both directions is combined to form the complete hidden layer state ℎ𝑡 = [ℎ𝑛
⃗⃗⃗⃗ , ℎ𝑛

⃖⃗ ⃗⃗⃗]. This is 

done to correlate the contextual information and obtain the contextual characteristics of the text. 

The BiLSTM layer is used to extract the contextual features of text, combining the text’s forward 

and backward hidden state results, which can better access the long-distance bidirectional semantic 

dependencies and effectively solve the dependency problem of the entities in the fault text that are far 

away from each other. 

4.2.2. CNN 

CNNs, as the most popular algorithm in deep learning, are widely used in image and time series 

data processing, and it has non-fully connected and weight-sharing network structure characteristics, 

which reduces the complexity of the network model and the number of weights. CNNs include two 

operations: convolution and pooling, whose principles are shown in Figure 4, and the specific process 

is as follows: 
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Figure 4. The principle of CNN. 

First, different sizes of convolution kernels on the input feature vector matrix for feature 

computation are used to obtain the local feature of the text, and the computation is shown in formula (7). 

 𝑐𝑖 = 𝑓(𝑊𝑐𝑋 + 𝑏𝑐) (7) 

Where 𝑊𝑐 is the weight parameter of the convolution kernel, 𝑓 is the activation function, 𝑏𝑐 is 

the bias term of the convolution kernel, and the final output of the convolution layer is shown in 

formula (8). 

 𝑐 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑛} (8) 

To simplify the expression of features, after obtaining text features by convolution, the max-

pooling operation is used to get the strongest features. After the convolution result is calculated, as 

shown in formula (9), to get the maximum value of c. After the pooling operation, the feature vector 

not only has a reduced dimension but also preserves the most core semantic information of the text. 

 𝐶𝑡 = max{𝑐} (9) 

4.3. MHA layer 

By incorporating the attention mechanism, the neural network can prioritize and concentrate on 

more important information relevant to the current task. This improves efficiency and accuracy in task 

processing. Considering the small size of the railway signal equipment fault corpus and the abundance 

of non-standardized text in the corpus, contextual feature vectors 𝐻𝑡 from BiLSTM and local feature 

vectors 𝐶𝑡 from CNN are combined to extract more textual features, which are then input into the 

MHA layer to calculate the attention mechanism. 

The process of the self-attention mechanism is to first multiply the input matrix 𝑋 with three 

hidden weight matrices, converting the input vector into a query vector 𝑄 and a set of key vectors 𝐾 

and value vectors 𝑉. The attention weights are then computed from 𝑄 and 𝐾 and applied to 𝑉 to 

obtain the output of the entire weights [33]. For inputs 𝑄, 𝐾 and 𝑉, the output vectors are computed 

as shown in formula (10), where 𝑄, 𝐾 and 𝑉 are three matrices with dimensions 𝑑𝑞, 𝑑𝑘 and 𝑑𝑣 respectively. 
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 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (10) 

The self-attention mechanism has the flaw that the model may excessively focus its attention on 

its own position when encoding information from the current position, so MHA is proposed to address 

this issue.  

MHA consists of multiple attention mechanism units that work together to let the model focus on 

data from different locations within different representation subspaces. Figure 5 shows the working 

principle of MHA: all the obtained feature vectors ℎ𝑒𝑎𝑑𝑖 are spliced and then 𝑊𝑂  is linearly 

transformed to obtain the final feature vector 𝑍, which is calculated as shown in formulas (11) and 

(12), where 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾  and 𝑊𝑖
𝐾  are the weight matrices of different attention units, and “Concat” 

stands for a splice vector. 

 𝑍 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,⋯ , ℎ𝑒𝑎𝑑𝑛)𝑊
𝑂 (11) 

 𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (12) 
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Figure 5. Working schematic of MHA. 

4.4. CRF layer 

To ensure the legitimacy of the final predicted label, CRF is introduced to add constraints to the 

final labels. For example, the first character in a word starts with a label “B-” or “O”, and the output 

character label after “B-Phe” must be “I-Phe”. With these constraints, the probability of illegal 

sequences in the label sequence prediction will be reduced, thus improving the correct rate of entity 

recognition. The CRF structure is shown in Figure 6. 

1y 2y 3y
1ny − ny 

1:nx

…

 

Figure 6. The structure of Conditional Random Field. 
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The observation sequence 𝑋 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛} and the state prediction sequence 𝑌 = {𝑦1, 𝑦2,⋯ , 𝑦𝑛} 

are known, and the correspondence 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) is calculated according to formula (13), where 𝑃𝑦𝑖,𝑥𝑖
 

denotes the condition where the label is 𝑦𝑖 and the observed character is 𝑥𝑖 of 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒, which 

comes from the hidden state of BiLSTM. 𝐴𝑦𝑖−1,𝑦𝑖
 denotes the transfer from the 𝑦𝑖−1 label to the 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 of the label 𝑦𝑖, which is learned as part of the model parameters and obtained 

during training. 

 𝑆𝑐𝑜𝑟𝑒(𝑥, 𝑦) = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 + 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 = ∑ 𝐴𝑦𝑖−1,𝑦𝑖

𝑛+1
𝑖=1 + ∑ 𝑃𝑦𝑖,𝑥𝑖

𝑛+1
𝑖=1  (13) 

The probability of the predicted sequence is obtained from formula (14) by normalizing all 

possible sequence paths with softmax function, where 𝑌𝑥 denotes the set of all possible tag sequences 

against the input sequence𝑥, �̃� denotes the current predicted tag sequence, 𝑠𝑐𝑜𝑟𝑒(𝑥, �̃�)  denotes 

the total score of the sentence under the current predicted tag sequence and exp() denotes the 

exponential function. 

 𝑃(𝑦|𝑥) =
exp{ 𝑠𝑐𝑜𝑟𝑒(𝑥,𝑦)}

∑ exp{ 𝑠𝑐𝑜𝑟𝑒(𝑥,�̃�)}�̃�∈𝑌𝑥

 (14) 

In the training phase, the likelihood function of the predicted sequence is obtained by taking 
logarithms at both ends, as shown in formula (15). 

 𝐼𝑛(𝑃(𝑦|𝑥)) = 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) − 𝐼𝑛(∑ 𝑠𝑐𝑜𝑟𝑒(𝑥, �̃�)�̃�∈𝑌𝑥
) (15) 

In the decoding stage, the maximum likelihood function 𝑎𝑟𝑔𝑚𝑎𝑥() is used for decoding to obtain 

a set of sequences with the highest overall output probability, which is the final predicted labeled 

sequence, as shown in formula (16). 

 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
�̃�∈𝑌𝑥

𝑠𝑐𝑜𝑟𝑒(𝑥, �̃�) (16) 

The specific process is to take the output sequence of the previous layer of MHA as input, and 

the CRF predicts the label sequence 𝑌𝑠 = {𝑦1, 𝑦2,⋯ , 𝑦𝑛} with the constraint relationship and highest 

probability based on the character labels before and after the context.  

5. Experimentation and analysis 

5.1. Experimental environment 

The experimental environment is a Windows 10 operating system. The CPU is an Intel(R) Core 

(TM) i9-13900KF. The compilation language is Python version 3.9, and Spyder is used as the 

integrated development environment. Pytorch, a deep learning framework developed by the Facebook 

Artificial Intelligence Institute, was used to build the NER model. 

5.2. Experimental parameters 
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Table 2. Experimental parameter settings. 

Parameter Value 

embedding_size 768 

lstm_hidden_size 128 

cnn_size 64 

kernel_size (3,4,5) 

attention_heads 8 

epoch 70 

max_length 128 

batch_size 64 

learning rate 0.001 

dropout 0.5 

activation function ReLU  

5.3. Evaluation index 

In this study, the model is evaluated on its precision (P), recall (R) and F1 value in the task of 

recognizing entities in fault information for railway signal equipment. The formulas for these three 

indexes are shown in (17) ~ (19). 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (17) 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (18) 

 𝐹1 =
2×𝑃×𝑅

𝑃+𝑅
× 100% (19) 

Where TP represents the number of entities correctly recognized, FP represents the number of 

entities incorrectly recognized and FN denotes the number of entity labels not recognized. 

5.4. Experimental results and analysis 

5.4.1. Hyperparameter tuning 

In the MHA layer, the number of heads is a highly essential parameter, and its selection will 

directly affect the MHA’s ability to extract the key features. Table 3 shows the effect of different 

attention heads in the MHA layer on the model indexes. According to Table 3, the model achieves 

optimal performance when the attention head is set to 8. Specifically, compared to the attention heads 

2, 4 and 5, the F1 score improves by 0.8%, 0.29% and 0.2%. 
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Table 3. Effect of different attention heads on model metrics in the MHA layer. 

Number of heads P (%) R (%) F1 (%) 

2 92.89 91.23 92.05 

4 92.94 92.19 92.56 

5 93.06 92.26 92.65 

8 93.25 92.45 92.85 

10 92.97 92.38 92.67 

5.4.2. Model verification 

Table 4 shows the recognition effect of five entity labels under the NER model based on 

RoBERTa-wwm and deep learning integration proposed in this paper. From the results, the evaluation 

indexes of fault phenomenon, repair measure, and repair outcome are high, and their precisions reach 

93.08%, 92.03% and 96.45%, respectively. The expression of these three entities is relatively single, 

with prominent grammatical features and obvious entity boundaries. The precisions of fault reason and 

fault position are only 89.42% and 83.23%, respectively. This result is due to the diversity of fault 

reason and fault position language descriptions, and the blurring of the boundaries between the entities. 

A fault phenomenon corresponding to the fault reason of the situation is very complex, resulting in the 

inability to learn the correct expression of the cause of the fault. 

Table 4. Recognition effect of five entity labels under the RBCMC multilevel model. 

Type of entity P (%) R (%) F1 (%) 

Phe 93.08 88.23 90.59 

Pos 83.23 84.49 83.85 

Rea 89.42 77.43 83.00 

Mea 92.03 88.76 90.37 

Out 96.45 98.16 97.30 

5.4.3. Model comparison 

To further validate the effectiveness of the model suggested in this paper on this dataset, the model 

and other common NER models are compared and tested, and the results are shown in Table 5~11. The 

common entity recognition models used are as follows: 

(1) The HMM model is a directed graph probabilistic and generative model. The model generates 

entity labels as unobservable sequences of hidden states and readable raw corpus text as an 

observable result. 

(2) The CRF is a model of conditional probability distribution given a set of input random 

variables conditional on another set of output random variables. The linear chain CRF is one of the 

most commonly used models for sequence labeling problems. 

(3) The BiLSTM model, as the most basic model of a neural network, first takes a sentence as 

input, then moves two LSTMs in opposite directions of the sentence to construct a context-sensitive 

representation of each word, and finally predicts each entity label using the softmax function. 

(4) The BiLSTM-CRF model is the most mainstream NER model. The BiLSTM layer produces 
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the predicted value for each label, which serves as the input for the CRF. By transferring the 

probabilities in the CRF loss function, the model can learn various constraining rules to enhance the 

accuracy of the result. 

(5) The BiLSTM-CNN-CRF model splices the feature vectors from the CNN and BiLSTM into 

the CRF layer. It has been proven that this kind of parallel structure can extract more features from 

longer text sequences. 

(6) The BiLSTM-CNN-MHA-CRF (BCMC) model adds an attention mechanism based on the 

BiLSTM-CNN-CRF model to obtain the global features of the text sequence and how strength the 

characters are linked to each other. 

The recognition effect of the fault phenomenon “Phe” under each model is shown in Table 5. The 

RBCMC multilayer model, as described in this study, has exceptional efficacy in accurately identifying 

the labels “B-Phe”, “M-Phe” and “E-Phe”, achieving F1 of 88.73%, 92.41% and 90.28%, respectively. 

Compared with the BiLSTM-CRF model, the precision is improved by 0.16%, 9.13% and 8.91%, 

respectively, and the recognition effect of the “B-Phe” label is relatively general. The reason is that the 

first character of the entity label is mostly uncertain. 

Table 5. Effectiveness of different NER models in recognizing the fault phenomenon. 

Models 
B-Phe M-Phe E-Phe 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) 

HMM 66.22 83.05 73.68 82.41 89.86 85.97 71.62 89.83 79.70 

CRF 79.49 73.81 76.54 83.20 89.66 86.31 82.89 85.14 84.00 

BiLSTM 88.71 74.32 81.67 80.44 96.77 87.86 80.96 90.97 85.67 

BiLSTM-CRF 88.89 75.68 81.75 88.20 92.39 90.25 83.95 91.89 87.74 

BiLSTM-CNN-CRF 88.06 79.73 83.69 89.01 93.66 91.27 89.04 87.84 88.44 

BCMC 87.50 85.14 86.30 88.50 95.09 91.67 86.85 93.19 89.91 

RBCMC 89.05 88.89 88.73 97.33 87.95 92.41 92.86 87.84 90.28 

 

The recognition effect of the fault position “Pos” under each model is shown in Table 6. The 

recognition effect of this label in each model is relatively general, and the F1 values of the RBCMC 

multilayer model proposed in this paper for recognizing the labels “B-Pos”, “M-Pos” and “E-Pos” 

reach only 83.58%, 85.71% and 81.71%, respectively. There are many uncertainties in general fault 

positions, leading to complex and diverse linguistic expressions. 

Table 6. Effectiveness of different NER models in recognizing the fault position. 

Models 
B-Pos M-Pos E-Pos 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) 

HMM 77.42 57.14 65.75 65.57 68.97 67.23 56.00 70.00 62.22 

CRF 74.29 61.90 67.53 78.12 59.52 67.57 74.14 61.88 67.45 

BiLSTM 82.35 61.76 70.59 73.58 71.00 72.26 68.03 70.39 69.19 

BiLSTM-CRF 71.89 66.50 69.09 75.00 72.73 73.85 86.21 59.52 70.42 

BiLSTM-CNN-CRF 69.23 81.47 74.85 70.21 88.36 78.24 60.40 89.71 72.19 

BCMC 68.98 90.09 78.13 81.05 86.64 83.75 76.39 80.88 78.57 

RBCMC 84.85 82.35 83.58 87.44 84.05 85.71 77.39 87.07 81.95 
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The recognition effect of the fault reason “Rea” under each model is shown in Table 7, and the 

performance in terms of recognition is unsatisfactory. The RBCMC multilayer model suggested in this 

study achieves the highest performance, with a F1 of only 80.88%, 84.44% and 82.5% for “B-Rea”, 

“M-Rea” and “E-Rea”, respectively. 

Table 7. Effectiveness of different NER models in recognizing the fault reason. 

Models 
B-Rea M-Rea E-Rea 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) 

HMM 53.73 75.00 62.61 68.57 70.59 69.57 63.64 51.47 56.91 

CRF 72.41 61.76 66.67 60.82 86.76 71.52 61.34 59.50 60.41 

BiLSTM 69.57 70.59 70.07 78.57 71.50 74.87 58.09 70.00 63.49 

BiLSTM-CRF 60.82 86.76 71.52 86.29 69.05 76.32 79.39 63.50 70.56 

BiLSTM-CNN-CRF 77.42 70.59 73.85 71.43 87.84 78.79 84.85 66.67 74.67 

BCMC 81.36 77.16 79.20 88.51 76.63 82.41 78.57 80.88 79.71 

RBCMC 90.74 74.24 80.88 85.07 83.82 84.44 92.45 74.24 82.35 

 

The recognition effect of the repair measure “Mea” under each model is shown in Table 8. The 

performance of the various types of labels of repair measures is relatively good, mainly because the 

label expression is relatively single and the entity boundary is relatively clear. The F1 values of “B-

Mea”, “M-Mea” and “E-Mea” are improved by 9.56%, 3.91% and 6.71% based on the BiLSTM-CRF 

model, which indicates that the CNN and MHA play a great role in extracting text features. 

Table 8. Effectiveness of different NER models in recognizing the repair measure. 

Models 
B-Mea M-Mea E-Mea 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) 

HMM 78.95 66.18 72.00 84.38 72.97 78.26 60.82 86.76 71.52 

CRF 71.11 76.19 73.56 85.71 81.82 83.72 82.91 65.50 73.18 

BiLSTM 90.74 74.24 80.88 86.94 87.05 86.99 84.38 72.97 78.26 

BiLSTM-CRF 88.71 83.33 85.94 96.36 80.03 87.60 92.45 74.24 82.35 

BiLSTM-CNN-CRF 83.07 90.95 86.83 92.65 85.14 88.73 88.46 83.13 85.71 

BCMC 93.33 84.85 88.89 98.25 84.85 91.06 91.53 81.82 86.40 

RBCMC 89.72 91.16 90.44 94.44 88.76 91.51 91.94 86.36 89.06 

 

The recognition effect of the repair outcome “Out” under each model is shown in Table 9. As the 

best-performing category among the five entity types, the label has a relatively single expression, 

which is mainly expressed as “Fault disappears, equipment back to normal”, “Equipment normal, 

write-offs restored”. 
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Table 9. Effectiveness of different NER models in recognizing the repair outcome. 

Models 
B-Out M-Out E-Out 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) 

HMM 94.64 80.30 86.89 81.48 89.19 85.16 80.63 87.93 84.12 

CRF 89.33 87.47 88.39 90.91 88.35 89.61 90.14 86.49 88.28 

BiLSTM 90.98 89.16 90.06 89.88 92.17 91.01 87.61 93.03 90.24 

BiLSTM-CRF 89.98 90.76 90.37 88.71 94.83 91.67 95.26 87.66 91.30 

BiLSTM-CNN-CRF 91.84 90.36 91.09 94.96 92.62 93.78 92.79 93.37 93.08 

BCMC 92.37 99.18 95.65 97.60 94.53 96.04 90.24 99.57 94.87 

RBCMC 95.74 97.83 96.77 99.17 98.36 98.77 94.44 98.28 95.80 

 

The recognition effect of the other nonentity label O under each model is shown in Table 10. Since 

the other nonentity label O is the largest number label among the 16 labels, this label has a good index 

on each model, and the RBCMC multilayer model proposed in this paper has the best effect of 

recognizing it, with its precision, recall, and F1 reaching 97.23%, 87.95% and 92.37%, respectively.  

Table 10. Effectiveness of different NER models in recognizing the other nonentity labels. 

Models 
O 

P (%) R (%) F1 (%) 

HMM 94.75 76.62 84.73 

CRF 86.36 85.33 85.84 

BiLSTM 90.79 87.34 89.03 

BiLSTM-CRF 89.93 90.27 90.10 

BiLSTM-CNN-CRF 90.37 90.76 90.56 

BCMC 88.63 95.09 91.74 

RBCMC 97.23 87.98 92.37 

 

Table 11 shows the comparison of the entity recognition effects of different downstream models. 

From Table 11, the deep learning model demonstrates superior performance in the NER test when 

compared to the traditional machine model. This is achieved by automatically extracting the relevant 

characteristics from the text.  

Table 11. Performance comparison of different downstream models. 

Models 
Index 

P (%) R (%) F1 (%) 

HMM 77.78 79.97 78.86 

CRF 82.92 79.72 81.29 

BiLSTM 85.45 83.31 84.37 

BiLSTM-CRF 89.13 83.95 86.46 

BiLSTM-CNN-CRF 87.36 89.76 88.54 

BCMC 90.85 91.85 91.35 

RBCMC 93.25 92.45 92.85 
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The BiLSTM-CRF model outperforms the BiLSTM model because of the CRF's ability to 

effectively capture label dependencies and generate entity labels with constrained relationships. The 

comparison between BiLSTM-CRF and BiLSTM-CNN-CRF demonstrates that the performance of 

entity recognition is enhanced by the extraction of additional text features through the parallel 

operation of BiLSTM and the CNN. Compared with BiLSTM-CNN-MHA-CRF and BiLSTM-CNN-

CRF, the three indexes are increased by 3.49%, 2.09% and 2.81%, respectively, indicating that the 

MHA has obvious advantages for text feature extraction and combining features from different angles 

to enhance the model representation. The RBCMC model based on BiLSTM-CNN-MHA-CRF 

improves precision, recall and F1 by 2.4%, 0.6% and 1.5%, respectively. Taken together, the RBCMC 

multilevel model proposed in this paper has the highest evaluation indexes in the task of identifying 

entities with fault information. 

To verify the effectiveness of the RoBERTa-wwm pretrained model for the task of recognizing 

fault information, standard pretrained models are selected for comparison testing with RoBERTa-wwm 

used in this paper. The test results are shown in Table 12. From the table, the three evaluation indexes 

of precision, recall and F1 of ERNIE, BERT, Chinese-BERT-wwm and RoBERTa-wwm are all above 

80%, which shows that the pretrained language models of the BERT series have better performance 

for entity recognition in this paper’s dataset, with the RoBERTa-wwm model having the highest of the 

three indexes. The difference between the evaluation indexes of Chinese-BERT-wwm and BERT is 

only about 1%, and RoBERTa-wwm improves about 1% in all three evaluation indexes compared with 

Chinese-BERT-wwm. 

Table 12. Performance comparison of different pretrained language models. 

Models 
Index 

P (%) R (%) F1 (%) 

GPT-2 82.85 70.76 76.33 

ALBERT 73.66 84.62 78.76 

ERNIE 96.36 80.30 87.60 

BERT 90.57 90.79 90.68 

Chinese-BERT-wwm 91.44 90.60 91.02 

RoBERTa-wwm 93.25 92.45 92.85 

5.5. Case study 

To make the initial application of the model proposed in this paper, a railway signal equipment 

fault information entity recognition system is constructed as the basis of the future railway signal 

equipment fault knowledge graph. The system can recognize fault texts other than that of the test set 

of this paper, and the system recognition test is carried out with a railway fault text as an example. The 

system recognition results are shown in Figure 7. 
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fault phenomena

fault position

fault reason

repair measure

repair outcome

        At 20:46 on 24th January 2013, Hengdian East Station 1315# turnout inversion without 

indication, at 20:46, Hengdian East Signal Worker on duty through the microcomputer 

monitoring curve analysis: found that 15#J6 positioning wrench inversion turnout idling 

without indication. January 25th 0:10 hours skylight point of inspection found that the 15 # 

J6 turnout is not square, locking lever don't strength, resulting in the turnout conversion 

blockage. Through on-site observation of J6 external locking device locking rod and locking 

frame side grinding, three rods are not in a straight line and other phenomena to confirm that 

the J6 rutting machine installation is not square, by adjusting the rutting machine and the 

external locking installation to temporarily overcome the requirements of the work party 

pillow, the fault disappears, the equipment back to normal.
 

Figure 7. System identification results. 

6. Discussion 

For fault texts of railway signal equipment that contain numerous proper names, unclear entity 

boundaries and complex entity expressions, this paper presents an NER model that integrates 

RoBERTa-wwm and deep learning techniques for the purpose of identifying fault information. The 

model takes RoBERTa-wwm as the upstream model to obtain a vector representation of the rich 

semantic information of text sequences, a CNN working in parallel with BiLSTM to extract local 

features of the text more comprehensively and MHA to fuse the features with different granularity to 

obtain the label sequence with a constraint relationship in CRF. The final experiment shows that the 

RoBERTa-wwm and deep learning integrated model can effectively improve the recognition 

performance of fault information entities. However, due to the small amount of text data collected on 

railway signal equipment faults, the performance indexes are not ideal, and there is a subsequent need 

to improve the corpus to prove the effectiveness of the model and carry out the fault information entity 

relationship extraction task. 
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