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Abstract
In recent years, serious disasters have happened frequently, causing signifi-
cant loss of lives and substantial economic consequences. Considering that
rescue vehicles are mainly powered by electricity, they cannot compete with
the conventional ones in terms of the cruising range. Therefore, it is of great
significance to study how rescue vehicles can execute multiple rescue tasks
quickly and efficiently with energy constraint. In this paper, a multi-stage
vehicle routing algorithm based on task grouping (MSVR-TG) is proposed
for the rescue vehicle routing problem with energy constraint (VRPEC) in
disasters. In the task grouping stage, a novel K-means algorithm based on
angular density (K-means-ad) is suggested to address the instability of the
result of K-means caused by the random selection of initial cluster centers.
It can balance the travel distance of each vehicle as much as possible, which
is critical when vehicles are energy constrained. In the sequence planning
stage, a problem-specific genetic algorithm (PSGA) with multiple population
initialization rules and the route improvement strategy is introduced to bal-
ance the convergence speed and population diversity, achieving a promising
planning result. In the route adjusting stage, various removal and insertion
heuristics in the large neighborhood search (LNS) are designed to adjust the
routes, thereby further improving the planning result. The routes participat-
ing in adjustment are obtained via the developed route selection rule. The
validity of each stage in MSVR-TG has been verified in a series of scenar-
ios. A comparison about the proposed algorithm against several advanced
algorithms is constructed, and results reveal that MSVR-TG is superior over
compared algorithms for VRPEC.
Keywords: emergency rescue, energy constraint, vehicle routing problem,
task grouping

1. Introduction

The occurrence of natural and man-made disasters usually leads to sig-
nificant social and economic disruption, as well as high numbers of casualties
(Wan et al., 2021; Sun et al., 2021). Upon the occurrence of a disaster, emer-
gency rescue should be carried out at disaster areas with different severities in
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the shortest time, so as to effectively reduce post-disaster losses and improve
the survival probability of victims (Liu et al., 2020; Yu et al., 2020; Chen
et al., 2022). Emergency rescue operations mainly involve research on road-
way repair problem, routing problem, facility location problem, etc.(Zheng
et al., 2015). We focus on the rescue vehicle routing problem in disasters,
which has the following characteristics (Jiao et al., 2022; Song et al., 2022;
Zhang et al., 2022a):

• Tasks with multiple attributes are heterogeneous in terms of
urgency, importance and execution time, etc. Taking the nuclear
leakage scenario as an example, office buildings and fire points are the
areas where search and rescue tasks should be carried out urgently.
What’s more, compared with open environments, the execution time
for casualty searching in complex indoor environments is longer.

• Rescue vehicles are electrically driven with the limited max-
duration. Rescue vehicles should return to the transportation plat-
forms for energy supply or to be sent to other areas before energy
depletion.

• The situation is complex and changeable in disasters, so the
requirement for information validity is high. Especially in nu-
clear leakage scenarios, wireless communication equipment may fail
due to the nuclear radiation, resulting in rescue vehicles need to return
to the transportation platform within a specified time for information
transmission.

Vehicle routing problems (VRPs) in emergency logistics are character-
ized as scheduling limited vehicles to accomplish various tasks in rigidly lim-
ited times and under harsh environment conditions. In recent years, many
scholars have carried out research on rescue vehicle routing problem in dis-
asters. Wan et al. (2021) proposed a hybrid ant colony optimization algo-
rithm (HACO) to solve multi-objective multi-constraint emergency material
scheduling problem. Sun et al. (2021) developed a robust optimization model
for combined facility location and casualty transportation under uncertainty
in the number of casualties. Xu et al. (2021) presented an efficient rescue
route planning scheme operating within a high performance emergent res-
cue management system for vehicles based on the mobile cloud computing
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paradigm. However, above studies focus on the rescue vehicle routing prob-
lem with sufficient resources, and rarely consider the opposite situation. In
practical applications, the number of electric-driven rescue vehicles is limited
and the max-durations of them exist, so the number and scale of tasks they
can execute during the duration are limited.

In view of the limited energy of rescue vehicles, route planning of rescue
vehicles in disasters can be modeled as the vehicle routing problem under the
energy constraint (VRPEC), where transportation platforms provide assis-
tance to a certain number of tasks with different types of rescue demand
through rescue vehicles. There are two main characteristics of VRPEC,
namely, the multiple attributes of tasks and the limited energy of the rescue
vehicles, which lead to the following two problems to be solved.

(1) Trade-off among tasks with multiple attributes.

As can be seen in Table 1, VRPEC introduces the task importance and
the execution time into the capability vehicle routing problem (CVRP), and
expresses capability constraint as the max-duration, resulting in the situation
where tasks are not fully executed within a single duration. Fig. 1 shows the
route planning results in both CVRP and VRPRC. The crosses in Fig. 1(b)
represent the route segments deleted due to the energy constraint, and the
related tasks will be executed during the following durations.

Table 1: Comparison between CVRP and VRPEC.

Problem Objectives Capability
constraint

Importance of
task(customer)

Execution time
of task(customer)

Trade-off among
tasks(customers)

CVRP Cost, time Load

VRPEC The total weight of
the tasks executed Energy ✓ ✓ ✓

As a variant of VRP (Dantzig & Ramser, 1959), CVRP is NP-hard (Xiao
et al., 2021), so the VRPEC is NP-hard as well. It is difficult or even impos-
sible to obtain the optimal solution to the above problems in an acceptable
time. Therefore, in recent years, scholars have designed a variety of meta-
heuristics with excellent performance for CVRP and its variants, such as (Jia
et al., 2021; Altabeeb et al., 2021; Fg et al., 2022).

Existing CVRPs consider the cases of sufficient resources, that is, nodes
can be fully served. As mentioned above, in emergency rescue situations, the
number and the energy of rescue vehicles are limited, so the selected tasks
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(b) Planning result with energy
constraint in VRPEC

Figure 1: Planning results with and without energy constraint.

and the execution routes need to be reasonably optimized by combining the
attributes of tasks. Given that tasks have multiple attributes, the reasonable
choice of the tasks to be executed is a complex problem.

(2) Trade-off among energy consumptions of vehicles with limited energy.

Electric vehicles (EVs) are promising to reduce both transportation costs
and pollution effects in comparison to fossil-fuel-based engines. However, the
cruising range of electric vehicles is not comparable to that of the fossil-fuel-
based ones. Researches on the routing problem of energy-constrained vehicles
has received increasing attention, leading to a new variant of VRP, EVRP
(Kucukoglu et al., 2021). Sai et al. (2018) implemented a hybrid genetic
algorithm (HGA), which is a combination of GA and a local search strategy
to minimize the sum of the vehicle fixed cost, travel cost, and charging cost.
Jia et al. (2021) proposed a novel bilevel ant colony optimization algorithm
(BACO) to optimize both the service order of customers and the recharging
schedules of EVs.

Compared with EVRP, VRPEC in emergency rescue scenarios has the fol-
lowing characteristics: (i) Tasks have more attributes, and the requirements
of them are expressed in terms of execution time, importance, etc. Under
the condition of energy constraint, tasks with higher urgency and importance
need to be preferentially executed. (ii) Since there are no recharging stations
except for transportation platforms during task execution, rescue vehicles
with limited energy need to reasonably select the tasks to be executed and
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optimize the execution sequence within the duration. (iii) Energy consump-
tion is utilized as a constraint rather than the optimization goal. Therefore,
under the condition of insufficient resources, it is necessary to balance the
energy consumption of each vehicle as much as possible to improve the rescue
efficiency.

To sum up, existing algorithms have limitations in solving VRPEC, due
to the fact that the case of insufficient resources and tasks with multiple
attributes are rarely considered. In VRPEC, tasks to be executed need to be
reasonably selected, and the energy of each vehicle needs to be fully utilized.
For this reason, our motivation is to design an effective heuristic algorithm
according to the characteristics of VRPEC, which can achieve promising
solutions in bounded time.

In emergency rescue situations, tasks are assigned weights to indicate the
importance, and ones with higher values represent more important (Li et al.,
2020; Wan et al., 2021). Accordingly, we define the objective as maximizing
the total weight of the executed tasks within the duration of each vehicle.
To solve VRPEC efficiently, a multi-stage vehicle routing algorithm based on
task grouping (MSVR-TG) is proposed. The innovations and contributions
of this paper are listed below.

1. A novel multi-stage heuristic algorithm structure is proposed, including
the task grouping stage, the sequence planning stage and the route
adjusting stage, which can effectively solve VRPEC.

• In the task grouping stage, according to the distribution of the
tasks and the depot, an improved K-means based on angular den-
sity (K-means-ad) is suggested to address the instability of the
result of K-means caused by the random selection of initial clus-
ter centers. Due to the introduction of problem characteristics,
K-means-ad achieves high-quality grouping result which balances
the travel distance of each vehicle as much as possible.

• In the sequence planning stage, a variety of population initializa-
tion rules and the route improvement strategy are designed in the
problem-specific genetic algorithm (PSGA), which can effectively
balance the convergence and diversity of the population, so as to
obtain a promising result.

• In the route adjusting stage, the large neighborhood search (LNS)
with various removal and insertion heuristics is introduced to ad-
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just the sequence of the tasks in the selected routes, which can
effectively improve the total weight of the executed tasks. Com-
bined with the total weight and energy consumption of each route,
a route selection rule is developed to improve the directionality of
the neighborhood search.

2. The validity of each stage in MSVR-TG has been verified in a series
of scenarios. Simulations demonstrate that MSVR-TG is superior over
state-of-art algorithms for VRPEC and has an advantage in the running
time.

The remainder of this paper is organized as follows. Section 2 provides
a comprehensive related literature review. Section 3 introduces the problem
definition and the mathematical model for VRPEC. Section 4 elaborates
MSVR-TG in detail. In Section 5, MSVR-TG is compared with state-of-art
algorithms in a variety of test cases, and the results are analyzed. Section 6
makes concluding remarks and future works.

2. Literature review

Throughout the research history of VRP, it is easy to find that sufficient
research on the fundamental CVRP can benefit the other variants a lot.
Following the same path, CVRP is studied in this section as the basic VRPEC
model to contribute to the research of VRPEC.

In recent years, CVRP has attracted extensive attention. Since it is
NP-hard, scholars have proposed a variety of heuristic algorithms with ex-
cellent performance for it and its variants, as shown in Table 2. Algorithms
involved consist of global-search-based heuristics and divide-and-conquer-
based heuristics according to whether the original problem is decomposed.
The findings obtained from the literatures are presented.

(1) Global-search-based heuristic algorithms.

As shown in Table 2, many excellent optimization algorithms and their
combinations are used to address CVRP and its variants, such as genetic
optimization (Shahab et al., 2016; Sai et al., 2018; Karakatič, 2021), ant
colony optimization (Jia et al., 2021, 2022), particle swarm optimization
(Islam et al., 2021), neighborhood search based algorithms (Akpinar, 2016;
Xu & Cai, 2018; Lu et al., 2020), firefly algorithms (Altabeeb et al., 2019,
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Table 2: Comparison among literatures.

Literature Energy
constraint

Insufficient
resources1

Decomposition
method Algorithm

(Fang et al., 2013) Customer-based Voronoi spatial neighborhood-
based search heuristic

(Mei et al., 2014) Route-based RDG-MAENS2

(Akpinar, 2016) −11 LNS–ACO3

(Praveen et al., 2016) Customer-based Enhanced K-means
clustering algorithm

(Shahab et al., 2016) Customer-based Two-step genetic algorithm
(Zhang, 2017) Customer-based Novel two-phase heuristic4

(Sai et al., 2018) ✓ − Hybrid genetic algorithm5

(Kancharla & Ramadurai, 2018) ✓ − Adaptive large neighborhood search
with special operators

(Chen et al., 2019) − Highest effective time ratio
first algorithm

(Altabeeb et al., 2019) − CVRP-FA6

(Lu et al., 2020) ✓ − Iterated variable neighborhood
search algorithm

(Li et al., 2020) ✓ ✓ − Weighted targets sweep
coverage algorithm

(Xiao et al., 2021) Route-based EMRG-HA7

(Xu et al., 2021) Task-based (OT-K-means++) and GSOCI8
(Jia et al., 2021) ✓ − Bilevel ant colony optimization

(Islam et al., 2021) − Hybrid particle swarm optimization

(Lan et al., 2022) ✓ − Region-focused memetic algorithm with
heuristic-assisted solution initialisation

(Altabeeb et al., 2021) − Cooperative hybrid firefly algorithm
(Zhang et al., 2022b) Route-based Route clustering and search heuristic

(Jia et al., 2022) ✓ − Confidence-based bi-level ant colony
optimization algorithm

(Shang et al., 2022) Customer-based Memetic search with
evolutionary multitasking

(Liu et al., 2022) ✓ − Hybrid genetic algorithm9

(Öztaş & Tuş, 2022) − ILS-RVND-TA10

This study ✓ ✓ Task-based Multi-stage vehicle routing algorithm
based on task grouping (MSVR-TG)

1 Insufficient resources means vehicles cannot complete all tasks or serve all customers in a single trip.
2 RDG-MAENS: the combination of route distance grouping (RDG) and the memetic algorithm with extended

neighborhood search (MAENS).
3 LNS–ACO: the combination of the large neighbourhood search (LNS) and the ant colony optimization (ACO).
4 Novel two-phase heuristic: the combination of an improved density-based clustering algorithm and the max-min

ant system.
5 Hybrid genetic algorithm (HGA): the combination of GA and a local search strategy.
6 CVRP-FA: a firefly algorithm with two types of local search and genetic operators.
7 EMRG-HA: an evolutionary multi-objective route grouping-based heuristic algorithm.
8 GSOCI: a glow-worm swarm optimisation algorithm based on chaotic initialization.
9 Hybrid genetic algorithm (HGA): the combination of GA and 2-opt algorithm.
10 ILS-RVND-TA: the combination of iterated local search (ILS), variable neighborhood descent (RVND) and thresh-

old accepting (TA).
11 − indicates the problem decomposition is not involved in the literature.
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2021), and so on. Kancharla & Ramadurai (2018) presented an adaptive
large neighborhood search (ALNS) with special operators to deal with the
electric vehicle routing problem. Islam et al. (2021) combined the particle
swarm optimization (PSO) and variable neighborhood search (VNS) to solve
the clustered vehicle routing problem. Altabeeb et al. (2021) introduced
a cooperative hybrid firefly algorithm (CVRP-CHFA) with multiple firefly
algorithm (FA) populations to handle the capacitated vehicle routing prob-
lem. Liu et al. (2022) formulated the electric vehicle routing problem with
time windows as a mixed integer programming model and developed a hy-
brid genetic algorithm (HGA). Jia et al. (2022) proposed a confidence-based
bi-level ant colony optimization algorithm to solve the capacitated electric
vehicle routing problem.

The above studies mostly consider the case of sufficient resources. Even
for electric vehicles, recharging stations are introduced to achieve energy
replenishment during task execution. However, in emergency rescue, there
are no pre-set recharging stations on the way of task execution. Rescue
vehicles need to return to the transportation platform for energy supply.
Task selection and route optimization under the condition of limited energy
are challenging when the attributes of tasks are diverse.

(2) Divide-and-conquer-based heuristic algorithms.

Rescue missions have high requirements for timeliness, rapid and efficient
route planning for rescue vehicles will greatly reduce economic losses and
casualties. Thus, divide-and-conquer-based heuristic algorithms are adopted
to decompose the original problem into several independent sub-problems
(Xiao et al., 2021), which mainly includes task-grouping-based (customer-
grouping-based) algorithms (Zhang, 2017; Xu et al., 2021; Shang et al., 2022)
and route-grouping-based algorithms (Xiao et al., 2021; Zhang et al., 2022b).

For task-grouping-based algorithms, tasks (customers) are grouped based
on their locations and the depot, as shown in Fig. 2. Shahab et al. (2016)
proposed a two-step genetic algorithm (TSGA) to decompose CVRP into
regions (sub-problems) and found the shortest route for each region. Zhang
(2017) determined sets of cost-effective feasible groups through the improved
density-based clustering algorithm. Each cluster was assigned to one vehicle,
and the Max-min ant system was adopted to optimize the route. However,
the effectiveness of the above algorithms depends largely on the adopted
grouping method. Considering that tasks are different in types, needs, exe-
cution times and priorities in disasters, a single-shot grouping based only on
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the locations of tasks may not achieve optimal solution. How to effectively
group tasks with multiple attributes is a difficult problem (Xu et al., 2021).
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4G

1G
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2G
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(a) Task grouping result

1G

3G

2G

4G

1G

3G

2G

4G

(b) Route planning

Figure 2: The process of task-grouping-based algorithms.

The route-grouping-based algorithms treat routes as the clustering units,
as shown in Fig. 3. Mei et al. (2014) developed an effective decomposition
scheme called the route distance grouping (RDG) to decompose the problem,
which was able to obtain high-quality decompositions and focused the search
on the promising regions of the vast solution space. Xiao et al. (2021) intro-
duced an evolutionary multi-objective route grouping-based heuristic algo-
rithm (EMRG-HA) to decompose large-scale CVRPs into multiple subprob-
lems, and adopted a local search method to improve the quality of the routes
in the selected subproblem. Similar to task-grouping-based algorithms, the
effectiveness of such algorithms is affected by the grouping method. What’s
more, the applicability of route-grouping-based algorithms is limited under
the condition of insufficient resources (Li et al., 2020).

Due to the long cruising range of vehicles involved in traditional CVRPs,
the max-duration does not need to be considered during delivery. However,
in emergency rescue, taking into account the energy constraint of electric-
driven rescue vehicles, the cruising range of them cannot match those of
the conventional ones. To effectively improve the rescue efficiency, vehicles
need to execute tasks with high importance within their durations, and the
remaining ones will be completed during the subsequent durations. What’s
more, because of the energy constraint, the task scale, that is, the execution
time of the task, has to be considered in the task selection process. These
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Figure 3: The process of route-grouping-based algorithms.

problems make it much harder to manage a fleet of rescue vehicles than
conventional ones.

In summary, to effectively deal with the routing planning problem in
disasters, the following problems need to be considered in VRPEC.

• Efficient grouping of heterogeneous tasks. Existing studies mainly
cluster tasks based on their locations, and ignore other attributes, re-
sulting in poor quality of problem decomposition. However, in emer-
gency rescue, tasks with various attributes are randomly distributed,
so it is challenging to group them effectively.

• Trade-off among tasks under energy constraint. Currently, the
planning problem with sufficient resources is of great concern. How-
ever, in emergency rescue, the electric-driven rescue vehicles have max-
durations, and the number of them is limited. When resources are in-
sufficient and tasks have various attributes, the choice of tasks to be
executed is a difficult problem.

• Trade-off among energy consumptions of vehicles. When the
objective is to minimize the total distance, it may cause the energy
consumption of each vehicle imbalance. However, failure to fully utilize
resources will reduce the overall performance of the system under the
condition of insufficient resources.
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3. Problem formulation

3.1. Basic assumption
To facilitate the description and understanding of the problem, the fol-

lowing conditions are assumed.

• Each vehicle starts and ends its trip at the depot.

• Each task can be executed by at most one rescue vehicle.

• Since we focus on a homogeneous fleet of rescue vehicles, the inherent
loads of them are the same.

• The rescue tasks involved mainly include radiation concentration de-
tection, hazard source search, etc., so the load of each vehicle does not
change during the task execution.

• The energy consumption rates of rescue vehicles are consistent and do
not change throughout the process.

3.2. Problem statement
VRPEC can be modeled as an undirected graph G = (A,E), where

A = AT ∪ A0 is a set of nodes including tasks AT = {1, 2, · · · ,m} and
the transportation platform A0 labeled as 0. We call A0 as depot in the
following content. E denotes the arc set, and each element of it is the Eu-
clidean distance between two nodes. A homogeneous fleet of rescue vehicles
is situated at the depot, and K is the set of them. VRPEC can be formulated
as follows.

max
n∑

k=1

m∑
i=0

m∑
j=0

ωjx
k
ij (1)

s.t.
m∑
i=0

xkih =
m∑
j=0

xkhj ∀h ∈ AT , ∀k ∈ K (2)

n∑
k=1

m∑
i=0

xkij ≤ 1 ∀j ∈ AT (3)

m∑
j=1

xk0j = 1 ∀k ∈ K (4)
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m∑
i=1

xki0 = 1 ∀k ∈ K (5)

n∑
k=1

m∑
j=1

xk0j = n (6)

n∑
k=1

m∑
i=1

xki0 = n (7)

m∑
i=0

m∑
j=0

(
dij
v

+ atj) · xkij ≤ Eth ∀k ∈ K (8)

µi − µj + 1−m · (1− xkij) ≤ 0 ∀i, j ∈ AT , i ̸= j, ∀k ∈ K (9)

xkij ∈ {0, 1} ∀i, j ∈ A, ∀k ∈ K (10)
The goal of maximizing the total weight of the executed tasks under the

condition of limited energy is determined by Eq. (1). Constraint (2) en-
sures the arriving and the departing vehicle is the same for a given task.
Constraint (3) indicates each task can be executed at most once by the ve-
hicle. Constraints (4)-(5) denote that each vehicle needs to start and end
its trip at the depot. Constraints (6)-(7) assure the number of the routes.
Constraint (8) ensures the energy consumption of each vehicle is no more
than the energy threshold. In this paper, energy consumption is expressed
as the total time spent by the vehicle for one trip, including the travel time
between tasks and the time to execute tasks, and we call it makespan in the
following content. The energy threshold is expressed as the max-duration of
the vehicle. Constraint (9) is the sub-tour elimination constraint. Constraint
(10) indicate the range of the decision variable xkij. For convenience, abbre-
viations and notations involved are summarized and explained in Tables 3
and 4, respectively.

4. Multi-Stage Vehicle Routing Algorithm based on Task Grouping

In this paper, a multi-stage planning algorithm is proposed to solve VR-
PEC in disasters. The overall framework of the proposed algorithm is shown
in Fig. 4. It is easy to get VRPEC is divided into three stages at the problem
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Table 3: Abbreviations and interpretations.

Algorithm Abbreviation Interpretation

Problem layer VRPEC a vehicle routing problem with energy constraint
utilized in the post-disaster emergency rescue

Algorithm
layer

MSVR-TG the proposed algorithm, multi-stage
vehicle routing algorithm based on task grouping

MSVR-TG-random a variant of MSVR-TG where the routes
involved in LNS are selected randomly

K-means-ad a novel K-means algorithm based on
angular density

PSGA a problem-specific genetic algorithm
IGOs the improved genetic operators
TGOs the traditional genetic operators

RI random initialization
HII hybrid incremental initialization
HHI hybrid heuristic initialization
RR random removal
AR adjacent removal
TGR time greedy removal
TWGR time-weight ratio greedy removal
RIs random insertion
TGIs time greedy insertion

TWGIs time-weight radio greedy insertion
HTWGIs hybrid time-weight radio greedy insertion

level, including the task grouping stage, the sequence planning stage and the
route adjusting stage. The role of each stage and the algorithm modules
involved are introduced as follows.

4.1. Task grouping
The task grouping stage aims to group heterogeneous tasks according to

their locations and the depot, thereby balancing the moving distance of each
vehicle as much as possible.

It is well known that K-means dynamically adjusts cluster centers and ag-
gregates the points with similar characteristics (Ahmad & Khan, 2021). How-
ever, traditional K-means considers the Euclidean distance between tasks,
which may cause some clusters to be far away from the depot. As shown in
Fig. 5(a), circles represent tasks, the star represents the depot, and sectors

13



Table 4: Nomenclature.

Notation Definition

Sets

AT the set of tasks
A0 the transportation platform, named as depot
K the set of rescue vehicles

Wexe the weight set of the executed tasks
W the weight set of all tasks
AT the set of task execution times
U the set of cluster centers
P the location set of tasks
P̄ the location set of tasks unassigned
ξk the set of the tasks in group k
ςk the set of the selected tasks on route k

Parameters

n the number of rescue vehicles
m the number of tasks
dij the Euclidean distance between task i and task j
ωj the weight of task j
atj the execution time of task j
v the linear velocity of each rescue vehicle
p0 the location of the depot
Eth the energy threshold of each rescue vehicle

θi
the angle between the depot and the task connection

line and the positive direction of the x-axis

θ∗i
the θi corresponding to the task with the

largest angular density
∆angle the preset threshold in K-means-ad

δ the threshold of the angular density
Gmax the number of iterations in PSGA
Np the population size in PSGA
pc the crossover probability in PSGA
pm the mutation probability in PSGA
γ the random factor in HII
λ the task deletion ratio in HHI

η
the weight coefficient of makespan in the

objective funtion of PSGA
σ the random factor in insertion heuristic

α1, α2 random factors in route selection rule
β the task removal ratio in removal heuristic
T the number of iterations in LNS

Decision
variables

xk
ij

a decision variable. If rescue vehicle k travels from task
i to task j, xk

ij = 1. Otherwise, xk
ij = 0

µi the access order of task i

14



Improved K-means based on 

angular density

LNS with designed removal and 

insertion heuristics

Problem layer Algorithm layer

Task grouping stage

Sequence planning stage
Problem-specific genetic algorithm

Route adjusting stage

(a)

(b)

(c)

1C

2C

3C

4C

Figure 4: The framework of MSVR-TG.

represent clusters. It is easy to get that the vehicle assigned to cluster C1

consumes more energy on the way, which greatly reduces the number of the
tasks executed under the condition of energy constraint. And the vehicle
assigned to cluster C2 may have excess energy due to the fact that tasks
involved are closed to the depot.

To avoid the above problem as much as possible, a novel clustering al-
gorithm based on task angular density (K-means-ad) is proposed, and the
grouping result is shown in Fig. 5(b). By comparison, it can be found that
the grouping result obtained by K-means-ad makes each vehicle more bal-
anced in terms of the moving distance. In the following content, K-means-ad
is introduced in detail.

1C

2C

'

1C

'

2C

(a) Grouping result ob-
tained via K-means

1C

2C

'

1C

'

2C

(b) Grouping result ob-
tained via K-means-ad

Figure 5: Grouping results obtained by different clustering algorithms.
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4.1.1. Cluster center initialization
Although K-means is one of the most powerful clustering algorithms, its

result may be affected by the initial centers (Ahmad & Khan, 2021). For
incorrect initial centers, effective clustering may not be obtained. Therefore,
a center initialization rule based on angular density is proposed. Here, the
cluster center is represented as a ray starting from the depot and having an
angle with the positive horizontal direction in the range of [0◦, 360◦).

Definition 1 (Angular density). Define ρi =
∑

j∈AT ,j ̸=i

I(|θj − θi| ≤ δ/2) 1

as the angular density of node i.

The schematic diagram of θi is shown in Fig. 6, and δ is the pre-set thresh-
old. Taking tasks i, j and k as examples, the angular density is illustrated.
As shown in Fig. 7, the included angle of each colored region is δ. In the
blue area, except for task i, the remaining nodes are the neighbors of task i,
and ρi is the number of neighbors. It is easy to get, the number of neighbors
of task i, j and k are 5, 3 and 2 respectively, i.e. ρi = 5, ρj = 3, ρk = 2.

x
iθ

i
i

j k

Figure 6: The angle of task i.

x
iθ

i
i

j k

Figure 7: The angular density of each
task is calculated based on the number of
tasks in the corresponding colored area.

Algorithm 1 is the pseudocode of the center initialization rule based on
angular density. Lines 3-5 calculate the angular density of each task. Lines
6-7 select the task with the maximum angular density, and delete it and
its neighbors from the alternative set. The above process is repeated until
|U| = n.

1I represents the indicator function, which means that when the input is true, the
output is 1. Otherwise, the output is 0.
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Algorithm 1 Cluster center initialization
Input: n, P , p0, δ;
Output: Set of cluster centers U ;
1: Initialize U = ϕ;
2: while |U| < n do
3: for i = 1 to |P| do
4: Calculate the angular density ρi of task i;
5: end for
6: obtain i∗ with the maximum ρi;
7: Update P by removing i∗ and its neighbor nodes;
8: U = U ∪ θi∗ ;
9: end while

4.1.2. Task grouping based on angular density
Similar to K-means, K-means-ad iteratively adjusts the grouping result

by calculating the distance between each task and the cluster center, namely
the included angle. Algorithm 2 is the pseudocode of K-means-ad. Lines 3-5
are the adjustment process of both the cluster center and the task grouping
result. Firstly, the center nearest to each task is labeled according to Eq.
(11). Then, based on Eq. (12), the average angle of the tasks in each cluster
is calculated to update the cluster center. Finally, the change of the current
centers and the previous ones is calculated as Eq. (13).

c(k) = argmin
k

|θi − χk| (11)

χk
′ =

m∑
i=1

I(c(i) = k) · θi
m∑
i=1

I(c(i) = k)
(12)

J(U ,U ′) =
n∑

k=1

|χk
′ − χk| (13)

where χk and χk
′ denote the previous and the current center of cluster k,

respectively.
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Algorithm 2 K-means-ad
Input: n, P , p0, δ, ∆angle;
Output: Grouping result C;
1: Initialize the cluster center set U (Algorithm 1);
2: while J(U ,U ′) > ∆angle do
3: Categorize tasks based on (12);
4: Update the cluster centers in U ′ (13);
5: Calculate the difference between two iterations J(U ,U ′) (14);
6: end while

4.2. Sequence planning
The purpose of the sequence planning stage is to optimize the task ex-

ecution sequence based on the grouping result. Considering that the intro-
duction of the problem specific knowledge can improve the performance of a
metaheuristic (Nucamendi-Guillén et al., 2021), PSGA is proposed to gen-
erate route of each vehicle satisfying energy constraint. Algorithm 3 is the
pseudocode of PSGA, which is described in detail as follows.

Algorithm 3 Problem-specific genetic algorithm
Input: P , p0, ξk, v, AT,W , Eth, Np, Gmax, pc, pm, γ, η, λ, σ;
Output: Planning result R;
1: Population initialization (Section 4.2.2);
2: Fitness calculation (Section 4.2.3);
3: while maximum iteration Gmax is not reached do
4: Crossover with route improvement strategy (Section 4.2.4);
5: Mutation with route improvement strategy (Section 4.2.5);
6: Fitness calculation (Section 4.2.3);
7: Population update (Section 4.2.6);
8: Restart demand judgment, if necessary, execute restart strategy (Sec-

tion 4.2.7);
9: end while

4.2.1. Solution representation
The solution is represented by decimal encoding, with length |ξk|. Fig.

8(a) shows the encoding for the full execution of tasks. And the opposite
situation is shown in Fig. 8(b), where tasks 2 and 6 are not executed due
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to the energy constraint. The star and the circles represent the depot and
tasks, respectively. The number in each circle represents the index of the
task. The population size is denoted by Np.

4 3 8 9 2 5 1 6 7

3 8

1

7 56

9
4

2

(a) Tasks are all executed

4 3 8 9 5 1 7 0 0

3 8

1

7 56

9
4

2

(b) Part of the tasks are unexecuted

Figure 8: Solution representation.

4.2.2. Population initialization
In evolutionary algorithms, a promising initial solution can speed up the

exploration of the solution space, thus accelerating the convergence of the
algorithm (Guo et al., 2020). Therefore, the problem knowledge is utilized to
initialize the population and three initialization rules are introduced, includ-
ing the random initialization (RI), hybrid incremental initialization (HII),
and hybrid heuristic initialization (HHI).

• Random initialization (RI)

RI randomly selects tasks from the unassigned task set in turn under the
energy constraint and places them at the tail of the route, which can ensure
the diversity of the population.

• Hybrid incremental initialization (HII)

Although RI can increase the diversity of the population, it leads to
blindness in exploration due to the lack of problem knowledge (Guo et al.,
2020). Considering that the construction heuristic rule has advantages in
utilizing problem knowledge (Azad et al., 2017; Chang et al., 2018), it is
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applied to initialize the population. To increase the population diversity,
a random factor γ ∈ (0, 1) is introduced. In detail, for each individual, if
rand < γ (rand ∈ (0, 1)), one of the unassigned tasks is randomly selected
on the premise of satisfying the energy constraint. Otherwise, the one with
the minimum time-weight ratio is selected. The expression of the time-weight
ratio ψpq when task q is inserted after task p is expressed as Eq. (14). The
selection rule is described as Eq. 15. ςk represents the selected tasks on route
k.

ψpq =
(dpq + dq0 − dp0)/v + atq

ωq

∀p ∈ ςk, q ∈ ξk/ςk (14)

q∗ = argmin
q

ψpq (15)

• Hybrid heuristic initialization (HHI)

Although HII introduces problem knowledge in the process of individual
generation, it does not consider the overall quality of the route, and there
may be a large deviation from the optimal solution. In HHI, population
initialization is divided into two steps. Firstly, γ in HII is set to 0 to generate
the first individual pop. Next, based on pop, the remaining individuals are
obtained through a series of operations. In detail, after deleting a certain
number of tasks randomly in pop, part of the tasks in the alternative set are
selected based on the proposed route improvement strategy. λ ∈ (0, 1)
represents the proportion of deletion. Algorithm 4 is the pseudocode of HHI.

Algorithm 4 Hybrid heuristic initialization (HHI)
Input: P , p0, ξk, Np, v, AT , W , Eth, γ, λ;
Output: The initial population Pini;
1: Construct pop based on the time-weight ratio greedy rule in HII;
2: Pini = pop;
3: for j = 2 to Np do
4: pop′ = delete(pop, ξk, λ);
5: pop′′ = RouteImprovementStrategy(pop′, ξk,P , p0, v, AT,W , Eth);
6: Pini = Pini ∪ pop′′;
7: end for
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The details of the route improvement strategy is shown in Fig. 9. The
orange area indicates the tasks that can be selected, and the triangles denote
the locations where tasks can be inserted. The blue data in each yellow
box represents the weight of the task, and the purple rectangles represent
the execution time increment of inserting each task at the corresponding
location. When selecting tasks for insertion, the makespan increment of
inserting each task at each location is calculated. The makespan increment
∆T k

q for inserting task q between node i and node j is expressed as Eq.
(16). It can be seen that inserting task 4 in the third location can obtain the
minimum time-weight ratio and satisfy the energy constraint. The expression
of time-weight ratio ∆ψk

q for inserting task q between node i and node j is
shown in Eq. (17). After inserting task 4, the insertable locations, the
optional tasks, and the makespan increment need to be updated. The above
task insertion operation is called the route improvement strategy, which is
also involved in both crossover and mutation operators.

∆T k
q =

diq + dqj − dij
v

+ atq ∀i, j ∈ {0, ςk}, q ∈ ξk/ςk, k ∈ K (16)

∆ψk
q = ∆T k

q /ωq (17)
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Figure 9: Route improvement strategy.
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4.2.3. Objective funtion
It can be seen from Eq. (1) that the goal is to maximize the total weight

of the executed tasks under the energy constraint. When the total weights of
routes are the same, the smaller the makespan, the more likely it is to obtain
a high total weight in the route adjusting stage (Lan et al., 2022). Therefore,
to provide a promising planning result, the makespan of vehicle k is taken
as a part of the objective function fk, which is expressed as Eq. (18), and
η ∈ (0, 1).

fk =
∑

i∈{0,ξk}

∑
j∈{0,ξk}

(ωj + η · (dij
v

+ atj)) · xkij ∀k ∈ K (18)

4.2.4. Crossover
The crossover operator plays an important role in the population explo-

ration process (Daglayan & Karakaya, 2016). Combined with the character-
istics of the problem, the partially matched crossover (PMX) (Umbarkar &
Sheth, 2017) is improved to enhance the quality of the offspring individuals
and accelerate the convergence, as shown in Fig. 10.
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(c) Duplicate tasks in offsprings
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(d) Deletion of duplicate tasks

Figure 10: Improved crossover operator.

Like PMX, the improved crossover operator randomly selects gene seg-
ments of parents for exchange, as shown in Fig. 10(a)-(b), and obtains two
offspring individuals pops1 and pops2. However, considering the limitation
of the energy, some tasks do not exist in parents. To enhance the explo-
ration of the decision space, the duplicate tasks marked in Fig. 10(c) that
are not in the swap positions are deleted, and the result is shown in Fig.
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10(d). Since deleting some tasks may cause energy constraint unsaturated,
the route improvement strategy in Section 4.2.2 is utilized to improve the
offsprings.

4.2.5. Mutation
Mutation operator simulates the evolution process in the biological world.

Although the occurrence probability is small, mutation is very important for
the generation of new species. The exchange mutation operator is adopted
to mutate individuals (Karakatič & Podgorelec, 2015), as shown in Fig. 11.
The route improvement strategy in Section 4.2.2 is utilized to improve the
offspring individual pops.

4 8 9 5 2 1 6 7 3

4 8 1 5 2 9 6 7 3

pop

spop

Figure 11: Exchange mutation operator.

4.2.6. Population update
In each iteration, due to the introduction of the genetic operators, the

population size will be larger than Np, and screening is required. Elite selec-
tion strategy is adopted to update the population (Karakatič & Podgorelec,
2015). All individuals in the parent population and the offspring population
are sorted in descending order based on their objective values, and the first
Np individuals are selected to enter the next iteration.

4.2.7. Restart strategy
In the iterative process, the diversity of the population may gradually

decrease. To avoid evolutionary stagnation due to the loss of diversity, the
restart strategy is employed (Guo et al., 2020). After updating the pop-
ulation, the similarity SDi between each individual popi and the optimal
individual pop∗ is calculated to determine whether a restart is required (Al-
tabeeb et al., 2019). The expression of SDi between pop∗ and popi is shown
as Eq. (19). Denote ϑ as the set of individuals whose SDi = 1. When |ϑ| is

23



greater than σ ·Np (σ ∈ (0, 1) is a pre-set threshold), individuals in ϑ will be
reinitialized by the initialization rules in Section 4.2.2.

SDi = sni/min(|ςpop∗ | , |ςpopi |) (19)
where sni is the number of non-zero elements in the same position in both
pop∗ and popi, as can be seen in Fig. 12. |ςpop∗ | and |ςpopi | represent the
numbers of non-zero elements in pop∗ and popi, respectively.

4 3 8 9 2 5 1 6 7

5 8 6 9 2 4 1 3 7

*pop

ipop

4isn =

Figure 12: Example of calculating sni for popi.

4.3. Route adjusting
Since tasks have multiple attributes, a single grouping of them can be

biased, requiring fine-tuning of routes. With the purpose of effectively bal-
ancing the energy consumption of each vehicle and maximizing the total
weight of the executed tasks, the route adjusting stage makes reasonable
trade-off among tasks with different execution times and weights.

Various factors may affect the planning result, such as attributes of tasks
and the durations of vehicles, so the initial grouping result may have devia-
tion. In other words, when tasks belonging to the same group are executed
collaboratively by different vehicles, it may bring greater total weight, as
shown in Fig. 13. Rk(k ∈ K) and R′

k(k ∈ K) denote the routes of vehicle
k before and after adjustment, respectively. Gk(k ∈ K) represents the task
set belonging to group k.

If the route of each vehicle is planned strictly according to the grouping
result, the optimal planning result is shown as Fig. 13(a). However, since
the weights of the tasks in G2 are lower compared to those of the unassigned
tasks in G1, adjusting routes R1 and R2 results in a larger total weight, as
shown in Fig. 13(b). The tasks removed and inserted after adjustment are
indicated in gray and orange areas, respectively. The red lines represent
the added elements, and the gray lines represent the deleted ones. In each
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rectangle, the number on the left represents the weight of the task, and that
on the right represents the execution time.
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(b) Planning result after adjustment

Figure 13: Route adjustment.

As mentioned above, the grouping result may be biased, so LNS is uti-
lized to dynamically adjust the tasks on each route. LNS has two successive
operators including removal heuristic and insertion heuristic (Shaw, 1998;
Kancharla & Ramadurai, 2018; Akpunar & Akpinar, 2021). The former re-
moves some components of the current solution, while the latter fixes the
destroyed solution by inserting some removed ones via a specific rule. The
newly generated solution is evaluated via an acceptance function to decide
whether to accept it as the new current solution.

Algorithm 5 shows the pseudocode of the LNS algorithm utilized in the
route adjusting stage of MSVR-TC. The route selection rule and the designed
removal and insertion heuristics involved in LNS will be described in detail
in the following content.

4.3.1. Route selection rule
In existing researches, adjustment is often applied to one or more routes

selected randomly (Machado et al., 2021; Zachariadis et al., 2022). Although
random selection can increase the exploration of the decision space, there
may be many useless attempts due to its blindness. To reduce the number
of invalid operations, the gravity center approach and the shannon entropy
approach are introduced in (Polat et al., 2015) and (Öztaş & Tuş, 2022),
respectively. The above approaches are combined with the roulette wheel
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Algorithm 5 LNS
Input: R,P , T, p0, v, AT,W , Eth, α1, α2, β;
Output: The improved planning result R′;
1: R′ = R;
2: while maximum iteration T is not reached do
3: Is = RouteSelectionRule(R′,P , p0, v, AT, α1, α2) (Algorithm 6);
4: [I ′s, P̄ ] = RemovalHeuristic(Is,P , p0, v, AT,W , β);
5: I ′′s = InsertionHeuristic(I ′s, P̄ , v, AT,W , Eth);
6: if I ′′s satisfies the aspiration criterion then
7: Replace Is with I ′′s ;
8: Update R′;
9: end if

10: end while

technique for route selection, and achieve good results. Considering the char-
acteristics of VRPEC, a new route selection rule is designed in MSVR-TG
to effectively improve the search efficiency, shown as Algorithm 6. In each
iteration, a neighborhood search is performed on two routes chosen via dif-
ferent rules. To enhance the exploration of the decision space, two random
factors are introduced, including α1 ∈ (0, 1) and α2 ∈ (0, 1).

Algorithm 6 Route selection rule
Input: R,P , p0, v, AT, α1, α2;
Output: Selected routes Is;
1: Timeexe = TimeCalculation(R,P , p0, v, AT );
2: if rand > α1 then
3: Select the route with the minimum Timeexe;
4: else
5: Select a route randomly;
6: end if
7: if rand > α2 then
8: Select the one closest to the first route;
9: else

10: Select a route that is different from the first one randomly;
11: end if

• For the first route, if rand > α1, the one with the minimum makespan
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is selected. Otherwise, a route is selected randomly. This rule takes
into account that routes with more remaining energy will have more
room for adjustment (Lan et al., 2022).

• For the second route, if rand > α2, the one closest to the first route is
selected. Otherwise, a route different from the first one is selected ran-
domly. It is easy to get that routes with less spatial distance are more
likely to have valid task exchanges (Lan et al., 2022). The expression
of distance between routes Ru and Rv is shown in Eq. (20) (Xiao et al.,
2021).

Dis(Ru, Rv) =

∑
i∈Ru

∑
j∈Ru

dij

NRu ×NRu

∀u, v ∈ K (20)

where NRu and NRv denote the numbers of tasks in route Ru and Rv, re-
spetively.

4.3.2. Removal heuristic
Combined with the problem knowledge, four removal heuristics are in-

troduced, and the details of them are as follows. Here, β represents the
proportion of tasks removed during the process of destroying the solution.

Random removal (RR): for route k, [β · |ςk|] tasks are randomly re-
moved in turn, and the remaining ones are connected in sequence.

Adjacent removal (AR): for route k, the first task to be removed is
randomly selected, based on which, [β · |ςk|]− 1 tasks are removed one after
another from route k. Specifically, the Euclidean distance between each task
on the route and each one that has been removed is calculated, and the task
on the route with the smallest distance value is removed in turn.

Time greedy removal (TGR): for route k, [β · |ςk|] tasks are removed
with the maximum makespan reduction ∆T̃ k

q in turn. ∆T̃ k
q denotes the

change in the makepan of removing task q, expressed as Eq. (21).

∆T̃ k
q =

{
d(q−1)q

v
+

dq(q+1)

v
− d(q−1)(q+1)

v
+ atq others

d(q−1)q

v
+ dq0

v
− d(q−1)0

v
+ atq q = |ςk|

(21)

Time-weight ratio greedy removal (TWGR): for route k, [β · |ςk|]
tasks are removed with the maximum time-weight ratio ∆ψ̃k

q in turn. ∆ψ̃k
q

denotes the time-weight ratio of removing task q, and its calculation is shown
in Eq. (22).
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∆ψ̃k
q = ∆T̃ k

q /ωq ∀q ∈ ςk (22)

4.3.3. Insertion heuristic
In combination with energy constraint and the attributes of tasks, four

insertion heuristics are utilized, and the detailed introduction is as follows.
Random insertion (RIs): unassigned tasks are selected and inserted

into route randomly under the condition of the energy constraint.
Time greedy insertion (TGIs): the unassigned task with the mini-

mum makepan increment ∆T k
q is selected and inserted into the corresponding

location of route k in turn under the condition of the energy constraint. The
expression of ∆T k

q is shown as Eq. (16).
Time-weight radio greedy insertion (TWGIs): the unassigned task

with the minimum time-weight ratio ∆ψk
q is selected and inserted into the

corresponding location of route k in turn under the condition of the energy
constraint. The expression of ∆ψk

q is shown as Eq. (17).
Hybrid time-weight radio greedy insertion (HTWGIs): there are

two ways of task selection and insertion. Under the condition of the en-
ergy constraint, one is to randomly select and insert unassigned tasks with
probability ε ∈ (0, 1) and the other is to select the one with the minimum
∆ψk

q .

4.4. Computational complexity
There are three main steps in MSVR-TC algorithm, and the computa-

tional complexity of each step is shown in Table 5.

• The complexity of K-means-ad is O(nm2).

• The complexity of PSGA is O(GmaxNpmξ
3).

• The complexity of LNS in MSVR-TC isO(Tm3), where T is the number
of iterations of LNS.

To sum up, the worst-case computational complexity of MSVR-TG is
O(GmaxNpkmξ

3 + Tm3).
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Table 5: Computational complexity analysis of MSVR-TG.

Algorithm Operation Computational complexity

K-means-ad Center initialization O(nm2)

Center adjustment O(nml)

PSGA

Population Initialization
RI O(Npmξ)

HII O(Npmξ
2)

HHI O(Npmξ
3))

Objective function O(GmaxNpmξ)

Crossover O(GmaxNpmξ
3)

Mutation O(GmaxNpmξ
3)

Population update O(GmaxNp log(Np))

Restart strategy O(GmaxNpmξ
2)

LNS

Route selection Route I O(nm)

Route II O(nm2)

Removal heuristic

RR O(m)

AR O(m3)

TGR O(m2)

TWGR O(m2)

Insertion heuristic

RIs O(m)

TGIs O(m3)

TWGIs O(m3)

HTWGIs O(m3)

1 l: the number of iterations of K-means-ad.
2 mξ: the maximum number of tasks in each group.

4.5. Illustrative example
For a better understanding of MSVR-TG, we present a typical numerical

example. The parameters of each task are shown in Table 6. The number of
the rescue vehicles is 3, and the energy threshold is 30.

Table 6: The parameters of tasks in the typical numerical example.

Index 1 2 3 4 5 6 7 8 9
ωi 5.74 3.52 3.92 5.52 4.78 5.32 5.38 4.36 4.99
ati 3.26 4.47 3.07 2.83 1.89 2.19 3.15 2.45 3.48

Index 10 11 12 13 14 15 16 17 18
ωi 5.71 4.12 5.51 4.52 3.16 5.17 4.99 3.94 4.37
ati 3.06 2.19 3.36 3.47 4.22 2.55 2.25 4.27 4.12
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As can be seen from Fig. 14, the task grouping result consists of three
parts, including (1, 4, 6, 9, 11, 15), (2, 3, 7, 12, 16, 17) and (5, 8, 10, 13, 14, 18).
Based on the grouping result, the initial route of each vehicle obtains via
PSGA, containing (0, 4, 6, 11, 9, 0), (0, 3, 2, 7, 16, 0) and (0, 5, 8, 18, 10, 0). It
shows that tasks within each group are not fully executed due to the energy
constraint. Through evolutionary process, the initial solution is optimized
as (0, 4, 6, 11, 15, 0), (0, 3, 7, 12, 16, 0) and (0, 5, 8, 13, 10, 0) with a higher to-
tal weight. Since the unassigned tasks in G1 have higher weights than tasks
belonging to G2 and G3, the planning result is further optimized by per-
forming the designed removal and insertion heuristics repeatedly until the
termination condition is fulfilled. The route adjusting part shows the im-
proved results where R1 and R2, and R1 and R3 are selected in sequence.
The grey dots indicate the unassigned tasks participating in LNS. The final
result shows that tasks belonging to the same group initially are performed
by different vehicles, and the tasks involved are marked with the yellow oval
area in Fig. 14.

5. Simulations and results

In this section, the performance of MSVR-TG is tested in a variety of
scenarios and the results are analyzed in detail. Computations are performed
using Matlab software version R2020b, on a personal computer with 64-bit
operating system, Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz.

5.1. Test case generator
To our knowledge, there is no recognized benchmark for VRPEC. There-

fore, a new set of benchmark cases that comprehensively consider the charac-
teristics of the route planning problem in disasters is designed, following the
approach that generates benchmarks for the CVRP (Uchoa et al., 2017). The
test case generator is applied to generate cases from five dimensions including
the number of vehicles, the locations of tasks, the size of the environment,
the energy threshold and the location of the depot, as shown in Table 7.

Tasks are located randomly in a square, whose side length is lzone. The
weight and the execution time of each task are obtained in the range of [5, 15]
and [1, 10], respectively. To make the benchmark representative and avoid
chance, the locations, weights and execution times of tasks and the energy
thresholds of vehicles are randomly generated within the corresponding in-
terval. Considering the particularity of VRPEC, the number of vehicles in
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Figure 14: An example to illustrate the procedure of the proposed algorithm.

each case is fixed, ranging from [2, 10]. The difference between cases in set
A and set B lies in the scale of the problem, such as the number of agents,
the number of tasks, the scope of the environment, etc. Cases in set P-I and
set P-II are utilized to test the influence of the depot location on the per-
formance of the algorithm. In above cases, three different types of locations
for the depot are considered, mainly including central, eccentric and random
locations. The corresponding ranges are marked in Table 7.
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Table 7: Test cases for VRPEC.

Set Case n m Eth lzone p0

A

A-1 2 20 90 20 (10, 10)
A-2 2 25 100 20 (15, 10)
A-3 2 20 80 15 (5, 8)
A-4 2 15 60 10 (5, 5)
A-5 2 18 65 10 (3, 2)
A-6 2 25 80 15 (7, 8)
A-7 2 25 80 20 (15, 15)
A-8 2 28 100 18 (10, 10)
A-9 2 25 100 20 (15, 15)
A-10 3 20 55 15 (7, 8)

B

B-1 3 40 150 40 (20, 20)
B-2 3 60 150 30 (15, 15)
B-3 5 90 150 30 (15, 15)
B-4 4 100 150 20 (10, 10)
B-5 4 40 100 30 (15, 15)
B-6 4 50 120 40 (20, 20)
B-7 5 50 90 30 (15, 15)
B-8 5 70 150 50 (25, 25)
B-9 5 70 150 50 (10, 15)
B-10 6 180 150 30 (15, 15)
B-11 6 60 120 50 (25, 25)
B-12 8 100 150 60 (30, 30)
B-13 7 150 180 40 (20, 20)
B-14 9 120 120 50 (25, 25)
B-15 10 150 150 50 (25, 25)

P-I P-I-v
v = 1, 2, ..., 10

4 60 150 40 ([0, 40], [0, 40])

P-II P-II-v
v = 1, 2, ..., 10

8 120 150 50 ([0, 50], [0, 50])

([0, 40], [0, 40]) and ([0, 50], [0, 50]) specify the ranges of the abscissa and ordinate
of the depot in each case group, and 10 different depot locations are obtained for
P-I and P-II, respectively.

5.2. Parameter setting
Since the performance of the algorithm varies with the values of parame-

ters, Taguchi method (Ding et al., 2018) is adopted to adjust some important
ones, including δ, α1, α2, β, T . The method is implemented with orthogonal
arrays containing all the information about the factors that affect the per-
formance of the algorithm. The factors involved are divided into two types:
(1) controllable or signal factors; (2) noise factor. The Taguchi method seeks
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to find the optimal combination of signal factor levels that minimizes the
effects of noise factors in the response.

In this paper, the response value is the total weight of the executed tasks,
shown in Eq. (1), and the larger-the-better type of response is adopted.
Through preliminary experiments, we set four conditions for the value of
each parameter, that is, δ ∈ {5, 10, 15, 20}, α1 ∈ {0.1, 0.3, 0.5, 0.7}, α2 ∈
{0.1, 0.3, 0.5, 0.7}, β ∈ {0.1, 0.3, 0.5, 0.7}, T ∈ {10, 20, 30, 40}. Thus, L16(4

5)
orthogonal table is utilized to adjust them. The experimental result and the
setting of each parameter are shown in Fig. 15 and Table 8, respectively.

Figure 15: Parameter setting via Taguchi method.

5.3. Performance test of PSGA
Firstly, the performances of population initialization rules and genetic

operators designed in PSGA are tested. The combination of crossover and
mutation operators utilized in PSGA is expressed as the improved genetic
operators (IGOs), where the route improvement strategy is adopted. The
combination of crossover and mutation operators for comparison, that is, the
combination of PMX and exchange mutation, is represented as the tradi-
tional genetic operators (TGOs), where the route improvement strategy is
not adopted. Different combinations of initialization rules and genetic op-
erators are treated as different algorithms. Fig. 16 shows the convergence
speeds and the solutions of these above algorithms based on part of the cases
in Table 7. The following conclusions can be drawn from the curves.
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Table 8: Parameter setting for MSVR-TG.

Stage Algorithm Parameter Setting
Task grouping stage K-means-ad δ 5◦

Sequence planning stage PSGA

Np 2*|ξk|
Gmax 2*Np

pc 0.85
pm 0.15
γ 0.5

Route adjusting stage LNS

α1 0.1
α2 0.7
β 0.5
T 40
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Figure 16: Evolutionary curves for different combinations of initialization rules and genetic
operators.

1. The quality of the initial population obtained by HHI is sig-
nificantly better than those generated by the other two rules.
Although RI guarantees the diversity of the population, its random-
ness causes blindness in construction, so the optimal initial solution
obtained by RI has the minimum value in each case. In HII, problem
knowledge is introduced in the process of construction but lacks global-
ity. While the random factor increases the diversity, it may also bring
about the problem that high-quality individuals may not be obtained
due to the inappropriate task selection. In HHI, the above problems
are solved. Since HHI takes a more comprehensive consideration in
task selection, it avoids the problem of overall quality decline due to
the improper task selection to a certain extent.
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2. The introduction of the route improvement strategy effec-
tively speeds up the convergence of the algorithm and im-
proves the quality of the solution. TGOs only guarantees the
availability of the solution, but not its efficiency. On the basis of retain-
ing the excellent genes of the parents, the route improvement strategy
can adjust the improper sequences. After the exchange of gene seg-
ments, removing duplicate tasks in offsprings can effectively improve
the exploration of the decision space in the process of performing the
route improvement strategy. At the same time, the introduction of the
route improvement strategy for the mutated route also enhances the
quality of the solution.

To sum up, PSGA adopts the combination of hybrid heuristic initializa-
tion rule (HHI) and the improved genetic operators (IGOs) in the following
simulations.

Next, the optimal initial solution obtained via HHI will be compared with
two heuristic algorithms, which are briefly introduced as follows.

• HETRF (Chen et al., 2019)

Highest effective time ratio first algorithm (HETRF) is proposed to assign
regions and obtain coverage orders for agents. The scanning time of regions
and the flight time between regions are mainly considered in the planning
process, and the effective time is maximized as much as possible.

• WTSC (Li et al., 2020)

Weighted targets sweep coverage algorithm (WTSC) is designed to solve
a planning problem, where a set of agents are dispatched to efficiently patrol
the tasks in the given area to achieve maximum coverage in the minimum
time.

Considering that the total weight of each case varies greatly, the results
are normalized for display. τ denotes the task execution rate, expressed as
Eq. (23). Since the solution of PSGA utilizing HHI for initialization is related
to the grouping result of K-means-ad, the initialization solution of PSGA is
expressed as K-means-ad + HHI. As shown in Fig. 17, the average of the
best initial solutions obtained by K-means-ad + HHI in 20 runs is better
than those of the two heuristic algorithms in each case, which preliminarily
illustrates the effectivenesses of K-means-ad and HHI.
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τ = Wexe/W (23)
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Figure 17: Comparison on the task execution rate obtained by K-means-ad+HHI with
those generated by two heuristic algorithms.

To further prove the performance of the solution fPSGA obtained by
PSGA, CPLEX is adopted to calculate the route of each vehicle in the se-
quence planning stage. As shown in Table 9, PSGA has obtained the optimal
solution in 9 cases, and the total number of optimal routes tnor is 49, which is
the total number of the vehicles in the above cases. In the other 6 cases, tnor

is 27, and the total number of routes without optimal solution is 8, whose
gaps are within 0.1%. For the maximization problem, the expression of the
gap is shown as Eq. (24). f ∗ and fPSGA represent the optimal value of the
problem and the average value in 20 runs obtained by PSGA, respectively.
It is confirmed that the designed initialization rule and genetic operators can
better balance the diversity and the convergence, and obtain a promising
solution.

gap% =
f ∗ − fPSGA

fPSGA

× 100% (24)

5.4. Performance test of LNS
Firstly, the effects of different combinations of removal and insertion

heuristics are compared. The variants of MSVR-TG with different com-
binations can be viewed as different algorithms. Based on case set B in
Table 7, each algorithm runs independently for 20 times on each case. The
Wilcoxon rank-sum test is utilized with a significance level of 0.05. If one
algorithm is superior to another, the rank-sum test result is 1. Otherwise,
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Table 9: Comparison on results of PSGA and CPLEX on case set B.

Case PSGA CPLEX gap%
f Time/s f Time/s

B-1 375.87± 0.21 4.58± 0.22 375.94 2.31 0.02
B-2 570.37±0.00 9.45± 0.23 570.37 11.60 0.00
B-3 855.03±0.00 14.53± 0.34 855.03 24.07 0.00
B-4 832.50± 0.17 20.43± 0.30 832.55 423.10 0.01
B-5 387.81±0.00 3.17± 0.11 387.81 2.78 0.00
B-6 496.23±0.00 5.03± 0.15 496.23 5.42 0.00
B-7 434.43±0.00 3.65± 0.14 434.43 4.85 0.00
B-8 638.00± 0.17 7.99± 0.19 638.10 15.22 0.02
B-9 543.85±0.00 7.93± 0.16 543.85 265.59 0.00
B-10 1459.00± 0.25 43.64± 1.11 1459.21∗ − 0.01
B-11 500.40±0.00 4.49± 0.13 500.40 9.44 0.00
B-12 890.29±0.00 10.76± 0.28 890.29 25.88 0.00
B-13 1407.50± 1.36 29.41± 0.18 1408.96 215.87 0.10
B-14 977.74±0.00 11.24± 0.15 977.74 175.00 0.00
B-15 1391.50± 0.19 19.91± 0.20 1391.89 212.62 0.03

1 Each data in the second column is the mean and standard deviation of the solutions
obtained by PSGA in 20 runs, and that in the forth column is the (approximate)
optimal solution obtained by CPLEX in sequence planning stage, where * represents
the approximate optimal one within 2 hours.

2 Each data in the third column represents the mean and standard deviation of running
time obtained by PSGA in 20 runs, and that in the fifth column represents the running
time of CPLEX, where − indicates that the running time is more than 2 hours.

3 The optimal solutions obtained by PSGA are indicated in bold.

the rank-sum test result is 0. The result of the statistical analysis is shown in
Table 10. Each data denotes the total score of each algorithm in comparison
with others, which is the sum of the rank-sum test results in all cases.

According to Table 10, RR-TWGIs has the best performance among 16
variants of MSVR-TG, whose total score is 208. When the insertion heuristic
is fixed, the variants of MSVR-TG with random removal (RR) and adjacent
removal (AR) heuristics have higher scores in most cases, which implies that
introducing randomness has an advantage in exploring the complex solution
space. Conversely, when the removal heuristic is fixed, the variants of MSVR-
TG with time-weight radio greedy insertion (TWGIs) and hybrid time-weight
radio greedy insertion (HTWGIs) heuristics have higher scores, which implies
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Table 10: Results of the comparison among the variants of MSVR-TG with different
combinations of removal and insertion heuristics in LNS.

Algorithm RR-RIs RR-TGIs RR-TWGIs RR-HTWGIs
Score 0 166 208 191

Algorithm AR-RIs AR-TGIs AR-TWGIs AR-HTWGIs
Score 2 118 150 163

Algorithm TGR-RIs TGR-TGIs TGR-TWGIs TGR-HTWGIs
Score 23 22 36 38

Algorithm TWGR-RIs TWGR-TGIs TWGR-TWGIs TWGR-HTWGIs
Score 20 21 40 30

The highest score is indicated in bold.

that problem knowledge is conducive to the repair of the solution. In sub-
sequent simulations, MSVR-TG adopts the combination of random removal
heuristic (RR) and time-weight radio greedy insertion heuristic (TWGIs).

5.5. Performance test of the route selection rule
Next, the performance of the route selection rule is tested. The compar-

ison algorithm named MSVR-TG-random is the same as MSVR-TG except
for the route selection rule. In MSVR-TG-random, the routes involved in
LNS are selected in a random way. That is, α1 = 1, α2 = 1 in Algorithm 6.

The performances of MSVR-TG and MSVR-TG-random are tested based
on the cases in case set B. Each algorithm runs independently for 20 times,
and the Wilcoxon rank-sum test is utilized with a significance level of 0.05. As
show in Table 11, the proposed route selection rule can improve the solution
of 20% cases. Cases with improved solutions are accompanied by a larger
number of vehicles, including B-11, B-12, and B-15. To verify the conclusion,
the above test is carried out based on the cases in case set P-II. It is found
that the solutions are improved in 60% of cases, as shown in Table 11. It is
proved that the proposed route selection rule has obvious advantages under
the condition of a large number of vehicles. That is to say, when the number
of the route combinations that can be selected is large, the proposed route
selection rule can avoid blind exploration to a certain extent, and plays an
important role in improving the solution.

5.6. Performance test of MSVR-TG
To verify the performance of MSVR-TG, it is compared with the other

three algorithms, including EMRG-HA, CVRP-FA and HPSO. Each algo-

38



Table 11: Comparison between MSVR-TG-random and MSVR-TG.

Case set MSVR-TG-random MSVR-TG Percentage of cases improved
B 0 3 20%

P-II 0 6 60%

rithm runs 20 times independently on each case.
Firstly, we give a brief description of the comparison algorithms. Param-

eters of each comparison algorithm are set according to the original text, as
shown in Table 12.

Table 12: Parameter settings in comparison algorithms.

Algorithm Parameter Discription Setting

EMRG-HA

Gmax The maximum number of iterations 30
δ Ratio for controlling the number of groupings 0.1

ngroup The maximum number of groups k

Gmax_EMRG The maximum number of interations in EMRG 100
Np_EMRG The population size of EMRG 50

Gmax_TS_LS
The maximum number of interations in tabu
search-based local search 200

√
NC

t Execution number of local search in one interation 15 + random[0, 10]

ltube The tabu tenure 8

CVRP-FA

P-S Population size 110
MI Maximum number of iteration 1000
C-R Crossover rate 0.95
M-R Mutation rate 0.1

HPSO

ω Inertia coefficient 0.7
c1 Cognitive coefficient 2
c2 Social coefficient 2

α1, α2 Independent random numbers 0.5
K Total number of the particles m/4

1 k is the number of routes in the solution adopted for route group.
2 NC is the number of customers in the group to be optimized.
3 m indicates the total number of customers.

• EMRG-HA (Xiao et al., 2021)

EMRG-HA groups routes through a multi-objective evolutionary algo-
rithm, and the quality of routes in the selected group is improved via a local
search method. Since the EMRG-HA does not consider the energy constraint,
it is slightly modified during testing.

• CVRP-FA (Altabeeb et al., 2019)
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The hybrid firefly algorithm for CVRPs (CVRP-FA) integrates the tra-
ditional firefly algorithm (FA) with two types of local search and genetic
operators. Similar to EMRG-HA, energy constraint is introduced to it.

• HPSO (Islam et al., 2021)

The hybrid metaheuristic (HPSO) combines the particle swarm optimiza-
tion (PSO) and variable neighborhood search (VNS) for the clustered vehicle
routing problem. Similar to EMRG-HA, energy constraint is introduced to
it.

5.6.1. Comparison of results on case set A
To verify the validity of the proposed algorithm, the results obtained

by MSVR-TG are compared with those generated by the comparison algo-
rithms on case set A, as shown in Table 7. The optimal solution of each case
calculated by CPLEX is viewed as the benchmark.

As can be seen from Table 13, all the solutions obtained by MSVR-TG
are superior to those from the comparison algorithms. MSVR-TG obtains
the optimal solutions in 8 out of 10 cases, and the gaps of A-8 and A-10
are 0.07% and 0.26%, respectively. In terms of the running time, MSVR-TG
also has an advantage over the comparison algorithms and CPLEX. Fig. 18
shows the average of the task execution rates of each case obtained by each
algorithm in 20 runs.
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Figure 18: Comparison among task execution rates gained by algorithms for case set A.

5.6.2. Comparison of results on case set B
Next, the proposed algorithm is tested based on case set B in Table 7,

and the results are shown in Table 14. It shows that the results obtained
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via the proposed algorithm are better than those of CPLEX in 14 out of 15
cases, and the gap of case B-11 is 0.71%. Compared with the state-of-art
algorithms, the proposed algorithm has the highest score, and the running
time of it outperforms those of the comparison algorithms. Fig. 19 shows the
average of the task execution rates of each case obtained by each algorithm
in 20 runs.
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Figure 19: Comparison among task execution rates gained by algorithms for case set B.

5.6.3. Comparison of results on case sets P-I and P-II
Finally, the influence of the depot on the performance of the algorithm is

tested on case sets P-I and P-II with different locations of the depot.
As can be seen in Table 15, the location of the depot has a great influ-

ence on the total weight of the executed tasks. The results obtained by the
proposed algorithm are superior to those of the comparison algorithms. It
indicates that K-mean-ad can obtain effective grouping under different depot
location conditions. Except for P-I-3, the results of the proposed algorithm
are better than those obtained by CPLEX, and the gap is 0.12% in P-I-3,
which further proves the effectiveness of the proposed algorithm. Figs. 20-21
show the average of the task execution rates of each case in sets P-I and P-II
obtained by each algorithm in 20 runs, respectively.

By comprehensively analyzing the results in Tables 13-15, the following
conclusions can be drawn.

1. Divide and conquer is beneficial to improve the efficiency of
problem solving, and can obtain high-quality solutions. Since
global search is adopted in both CVRP-FA and HPSO, it is difficult
to obtain promising solutions within a specified time for large-scale
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Figure 20: Comparison among task execution rates gained by algorithms for case set P-I.
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Figure 21: Comparison among task execution rates gained by algorithms for case set P-II.

complex problems. The results of EMRG-HA are superior to those of
CVRP-FA and HPSO, mainly due to the introduction of route grouping
and local search.

2. Appropriate trade-off among multi-attribute tasks under the
energy constraint is critical. It is demonstrated that although
EMRG-HA tries to balance the makespan of each vehicle as much
as possible during route optimization, its performance is inferior to
MSVR-TG due to the lack of the task trade-off strategy. Fig. 22
shows the route planning results of MSVR-TG for cases B-3, B-13,
P-I-3 and P-II-5.

5.7. Performance test of the main modules in MSVR-TG
In this section, the validity of each main module in MSVR-TG is tested,

including the functional modules in the three stages, and their combined
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Figure 22: Route planning results of MSVR-TG.

modules. Firstly, the variants of MSVR-TG with module replacement are
introduced, and the composition of each algorithm is shown in Table 16.

• Random Sampling (RS)

RS is chosen as a comparison algorithm for many problems, such as
sensor-weapon-target assignment problem (Xin et al., 2019), multi-agent
coalition formation problem (Guo et al., 2020). In this paper, a random
planning rule, which randomly adds tasks to the route within energy con-
straint, is adopted in RS. The best solution is further improved through
iteration.

• MSVR
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Table 16: Functional modules of MSVR-TG and its variants in three stages.

Algorithm Task grouping Sequence planning Route adjusting
RS − random planning −

MSVR − random planning LNS
MSVR-TG-I K-means PSGA LNS
MSVR-TG-II K-means-ad random planning LNS
MSVR-TG-III K-means-ad PSGA −

MSVR-TG K-means-ad PSGA LNS

− indicates the stage is not involved in the algorithm.

To verify the effectiveness of the combination of K-means-ad and PSGA in
MSVR-TG, MSVR replaces it with the random sequence planning, in which
the task execution sequence of each vehicle is optimized without problem
decomposition. Routes satisfying the energy constraint are constructed by
randomly selecting the task from the candidate set.

• MSVR-TG-I

To verify the effectiveness of K-means-ad in MSVR-TG, MSVR-TG-I
replaces it with traditional K-means, which groups tasks according to the
Euclidean distance.

• MSVR-TG-II

To verify the effectiveness of PSGA in MSVR-TG, MSVR-TG-II replaces
PSGA with random planning in each group, which is similar to the solution
construction in MSVR.

• MSVR-TG-III

To verify the effectiveness of LNS in MSVR-TG, only the first two func-
tional modules of MSVR-TG are retained in MSVR-TG-III.

The results of MSVR-TG for cases in case set B are compared with those
obtained via the above variants. The Wilcoxon rank-sum test with a signifi-
cance level of 0.05 is utilized to analyze data statistically, as shown in Table
17.

Statistical results show that the functional module in each stage plays
an important role in improving the performance of the proposed algorithm.
The specific analysis is as follows.
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Table 17: Performance test of the main modules in MSVR-TG.

Algorithm RS MSVR MSVR-TG-I
Score 0 25 42

Algorithm MSVR-TG-II MSVR-TG-III MSVR-TG
Score 26 17 71

1. Compared with the traditional K-means, K-mean-ad can effectively
improve the quality of the grouping result, thus facilitating the explo-
ration in the latter two stages. At the same time, the initial centers
obtained based on the angular density can better deal with the instabil-
ity problem of the result of traditional K-means caused by the random
selection of initial cluster centers.

2. Comparing the scores of MSVR-TG with MSVR and MSVR-TG-II, it
shows that a high-quality planning result is crucial for the route ad-
justing stage, which can effectively enhance the search efficiency and
improve the quality of the solution. The population initialization rules
and the genetic operators utilized in PSGA can effectively balance the
exploration and exploitation, providing promising results and acceler-
ating convergence. For experimental verification, please refer to Section
5.3.

3. Tasks within the same group may be executed by different vehicles due
to the diversity of task attributes and the energy constraint. A single
clustering may not result in optimal grouping, so it is important to
adjust it based on the makespan and the total weight of each route.

6. Conclusion and discussion

VRPEC is a complex combinatorial optimization problem, for which
MSVR-TG is proposed. In the task grouping stage, it is demonstrated
that the suggested K-means-ad can effectively handle task grouping prob-
lems in different situations. It can also address the instability of the result
of K-means caused by the random selection of initial cluster centers. In the
sequence planning stage, the PSGA is introduced combined with the prob-
lem knowledge. The population initialization rules and the route improve-
ment strategy designed in PSGA can effectively improve the exploration
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and exploitation capabilities of the algorithm, thereby providing a promising
planning result. In the route adjusting stage, the performances of differ-
ent combinations of removal heuristic and insertion heuristic are compared.
Results show that the combination of random removal heuristic (RR) and
time-weight radio greedy insertion heuristic (TWGIs) performs best. The
effectiveness of the developed route selection strategy has also been verified.
What’s more, the validity of the functional module utilized in each stage is
proved via simulations.

Through extensive cases, it proves that MSVR-TG is effective to solve
VRPEC with a satisfactory performance, and significantly superior over the
comparison algorithms in terms of the total weight of the executed tasks and
the running time. In 8 out of 10 cases in case set A, MSVR-TG obtains the
optimal solutions, and has an absolute advantage in running time compared
to CPLEX. In 33 out of 35 cases in case sets B, P-I and P-II, the solutions
obtained by MSVR-TG are better than those optimized by CPLEX within
2 hours. Compared with the comparison algorithms, the solutions obtained
by MSVR-TG are all superior.

In future work, we will conduct an in-depth study on the following con-
tents to effectively deal with the vehicle routing problem in the emergency
rescue. 1) Route planning with sequential logic. 2) The impact of vehi-
cle load on energy consumption. 3) Route planning under the condition of
tasks with split servise. 4) Resource scheduling and route adjustment on the
occurance of new tasks.
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