
A Multi-objective Evolutionary Algorithm with New
Reproduction and Decomposition Mechanisms for the

Multi-Point Dynamic Aggregation Problem
Guanqiang Gao

stef_leon_gao@outlook.com
Beijing Institute of Technology

Beijing, China

Bin Xin
brucebin@bit.edu.cn

Beijing Institute of Technology
Beijing, China

Yi Mei
yi.mei@ecs.vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Shengyu Lu
lu_shengyu@126.com

Beijing Institute of Technology
Beijing, China

Shuxin Ding
dingshuxin@rails.cn

Signal and Communication Research
Institute, China Academy of Railway

Sciences Corporation Limited
Beijing, China

ABSTRACT
An emerging optimisation problem from real-world applications,
named the multi-point dynamic aggregation (MPDA) problem, has
become an active research of the multi-robot system. This paper
focuses on a multi-objective MPDA (MO-MPDA) problem which is
to design execution plans of robots for minimising the cost of used
robots and maximising the efficiency of task execution. The MO-
MPDA problem has the issues of conflicting objectives, redundant
representation, and variable-length encoding, posing extra chal-
lenges to address the MO-MPDA problem effectively. Combining
the 𝜀-constraint method and decomposition mechanisms, a novel
multi-objective evolutionary algorithm is proposed. The proposed
algorithm selects the efficiency objective as the main objective and
converts the cost objective as constraints. Thus, the multi-objective
problem is decomposed into a series of scalar constrained optimi-
sation subproblems by assigning each subproblem with an upper
bound constraint. All the subproblems are optimised and evolved
simultaneously with the transferring knowledge from other sub-
problems to solve the MO-MPDA problem parallelly and efficiently.
Besides, considering the characteristics of parent individuals, this
paper designs a hybrid reproduction mechanism to transmit effec-
tive information to offspring individuals for tackling the encoding
redundancy and varying-length. Experimental results show that the
proposed algorithm significantly outperforms the state-of-the-art
algorithms in terms of most-used metrics.

CCS CONCEPTS
• Computing methodologies → Robotics.
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1 INTRODUCTION
The Multi-Point Dynamic Aggregation (MPDA) problem is a task
planning problem of the multi-robot system, which comes from the
real world [13, 25, 28, 36]. Recently, it has become one of the active
research topics due to its applications such as bushfire elimination,
search and rescue, and medical resource scheduling domains [3, 7,
8, 18, 29]. Unlike the majority of scheduling and routing problems
[1, 26, 31, 33], the demand of each task in the MPDA problem
is time-varying and time-sensitive. Besides, multiple robots can
execute one task simultaneously to complete the task efficiently.
These distinctive characteristics lead to complex interactions among
robots and tasks, and it is difficult for a decision-maker to design
high-quality execution plans for robots to complete geographically
distributed tasks.

To the best of our knowledge, the previous researches about the
MDPA problem only focused on one single objective [9, 11, 30, 35],
such as the maximal completion time and the total execution time of
all the tasks. However, many real-world applications always consid-
ers two or more potentially conflicting objectives e.g., minimizing
the cost of used robots and maximizing the efficiency of task execu-
tion, simultaneously. In this paper, we focus on the multi-objective
MPDA (MO-MPDA) problem with the commonly considered ob-
jectives. An example of the MO-MPDA problem is shown in Fig. 1,
which has some tasks (e.g. fire points) with time-varying demands
and a depot with several robots in the mission environment. Fig. 1
uses four different colored segments, indicating four routes of robots
to execute all tasks. In this paper, the cost objective is regarded as
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Figure 1: An example of the MO-MPDA problem.

the number of used robots, and the efficiency objective is regarded
as the makespan (e.g. the maximal completion time of all the tasks).

The MO-MPDA problem has the following challenges. First, due
to the multi-objective characteristic, the previous single-objective
MPDA optimisation approaches [11, 13, 30] cannot efficiently han-
dle the two conflicting objectives. The whole single-objective ap-
proach needs to be adjusted to satisfy the changing robot number.
Second, the execution plan in the MO-MPDA problem is hard to
represent since unfixed length of an execution plan and the num-
ber of used robots. Thus, the number of decision variables in two
different individuals might be quite different in the decision space,
which raises great difficulty solving MO-MPDA. Third, homoge-
neous robots in MO-MPDA leads to many isomorphic execution
plans. Last but not least, similar to the single-objective MPDA prob-
lem, the time-varying demand and collaboration behaviours lead
to a huge and complex solution space of MO-MPDA. It is hard to
find a high-quality solution in the solution space.

The decomposition-basedmulti-objective evolutionary algorithm
with the 𝜀-constraint (DMOEA-𝜀C) simultaneously optimizes con-
strained optimization subproblems with different upper bounds
[4]. DMOEA-𝜀C is a very competitive method for addressing multi-
objective problems. Especially it shows obvious advantages on
combinational optimization problems [4, 5, 21, 22]. Since the MO-
MPDA problem is a combinational optimisation problem with tight
constraints, we expect DMOEA-𝜀C to be effective in addressing the
MO-MPDA problem.

The overall goal of this paper is to develop an effective algo-
rithm to obtain Pareto solutions of MO-MDPA for a decision-maker.
To achieve this goal, research contributions are shown as follows
specifically.

• We formulate a MO-MPDA problem with two conflicting
objectives: to minimize the number of used robots and the
makespan.

• An encoding method using matrices of different shapes and a
decodingmethod distinguishing arrival and departure events
are proposed in this paper. In a matrix encoding, each row
represents the task-executing sequences for a robot, and the
number of rows represents the number of used robots.

• A novel offspring reproduction mechanism is proposed in
this paper. To tackle the representation redundancy, all vis-
iting sequences of robots are first sorted according to the

characteristics of tasks in the proposed reproduction mech-
anism. Then, three crossover operators and one mutation
operator are designed to generate offspring individuals for
effective information transmission from parent individuals.

• The framework and mechanisms (i.e. offspring reproduc-
tion and subproblem-to-individual matching mechanisms)
of DMOEA-𝜀C are re-designed to fit the characteristics of
the MO-MPDA problem. The proposed algorithm selects the
makespan as the main objective and converts the number of
used robots as a scalar of constraints.

The rest of this paper is organised as follows. The mathematical
model of the MO-MPDA problem are presented in Section II. Then,
Section III describes the proposed DMOEA-𝜀C method. Sections IV
and V present the experimental results and performance analysis
of the proposed mechanisms. Finally, this paper is concluded in
Section VI.

2 BACKGROUND
2.1 Problem Description
There are a depot and a number of tasks (e.g. fire points and disaster
victims) with time-varying demands in the MO-MPDA scenario.
We use an undigraph 𝐺 (V, E) to define the MO-MPDA problem.
In the set of vertexes V = {𝑣1, . . . , 𝑣𝑁+1}, {𝑣1, . . . , 𝑣𝑁 } indicates
the set of tasks, and 𝑣𝑁+1 indicates the depot. Each task 𝑣𝑖 has an
inherent time-varying demand 𝑞𝑖 (𝑡), which changes based on the
following equation

𝑞𝑖 (𝑡) = 𝑞𝑖 (0) + 𝛼𝑖 × 𝑡, (1)

where 𝛼𝑖 represents the inherent increment rate of task 𝑣𝑖 . In the
set of edges of 𝐺 , every edge indicates a route among two tasks
with the travel time 𝑡𝑖, 𝑗 .

There are 𝜔 homogeneous robots located at the depot, which
will execute and complete all the time-varying tasks. Every robot
has the same ability 𝛽 , representing the amount of demand which
it can reduce per time unit. Fig. 2 shows an example demonstrating
the relationship between the task demand and abilities of robots. In
the figure, the task’s demand is decreased to 0 about time 12, and
the task is completed by three robots 𝑟𝑜𝑏1, 𝑟𝑜𝑏2, and 𝑟𝑜𝑏3.

Figure 2: An example of a task’s demand executed by three
robots over time.
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2.1.1 Mathematical model. The over goal of MO-MPDA is to de-
sign a series of Pareto execution plans for a decision-maker, which
makes all tasks completed as soon as possible with as few robots as
possible. Based on the aforementioned descriptions, the MO-MPDA
mathematical model can be defined as follows.

min 𝑓1 = max
𝑖∈{1,2, · · · ,𝑁 }

𝑐𝑡𝑖 (2)

min 𝑓2 = 𝐾 (3)

𝑠 .𝑡 .

𝑁+1∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑥𝑘𝑖,𝑗 ≥ 1,∀𝑗 ∈ {1, 2, . . . , 𝑁 } (4)

𝑁+1∑︁
𝑗=1

𝑥𝑘𝑖,𝑗 =

𝑁+1∑︁
𝑗=1

𝑥𝑘𝑗,𝑖 ,

∀𝑖 ∈ {1, 2, . . . , 𝑁 + 1},∀𝑘 ∈ {1, 2, . . . , 𝐾} (5)

𝑁+1∑︁
𝑖=1

𝑥𝑘𝑖,𝑗 ≤ 1,

∀𝑗 ∈ {1, 2, . . . , 𝑁 },∀𝑘 ∈ {1, 2, · · · , 𝐾} (6)

𝑎𝑡𝑁+1,𝑘 = 𝑐𝑡𝑁+1 = 0,∀𝑘 ∈ {1, 2, · · · , 𝐾} (7)

𝑎𝑡 𝑗,𝑘 =

𝑁+1∑︁
𝑖=1

(𝑐𝑡𝑖 + 𝑡𝑖, 𝑗 )𝑥𝑘𝑖,𝑗 ,

∀𝑗 ∈ {1, 2, . . . , 𝑁 },∀𝑘 ∈ {1, 2, · · · , 𝐾} (8)

𝑞 𝑗 (0) + 𝛼 𝑗𝑐𝑡 𝑗 =
𝑁+1∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑥𝑘𝑖,𝑗 𝛽 (𝑐𝑡 𝑗 − 𝑎𝑡 𝑗,𝑘 ),

∀𝑗 ∈ {1, 2, . . . , 𝑁 } (9)

𝛼 𝑗 <

𝐾∑︁
𝑘=1

𝑁+1∑︁
𝑖=1

𝑥𝑘𝑖,𝑗 𝛽,∀𝑗 ∈ {1, 2, . . . , 𝑁 } (10)

𝐾 ≤ 𝜔 (11)

𝑥𝑘𝑖,𝑗 ∈ {0, 1}, 𝑖 ≠ 𝑗,

∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁 + 1},∀𝑘 ∈ {1, 2, . . . , 𝐾} (12)

where the integer decision variable𝐾 represents the number of used
robots to execute all the tasks, and the binary decision variables
𝑥𝑘
𝑖,𝑗

takes 1 if 𝑟𝑜𝑏𝑘 travels from 𝑣𝑖 to 𝑣 𝑗 , and 0 otherwise. 𝑎𝑡 𝑗,𝑘 and
𝑐𝑡 𝑗 are auxiliary variables to describe MO-MPDA. 𝑎𝑡 𝑗,𝑘 represents
the arrival time of 𝑟𝑜𝑏𝑘 at 𝑣 𝑗 , and 𝑐𝑡 𝑗 represents the completion
time of 𝑣 𝑗 respectively.

One objective (2) of the MO-MPDA problem is to minimize the
maximum completion time of all tasks, and the other objective (3) is
to minimize the number of robots executing all tasks. Constraint (4)
ensures that each task is executed by at least one robot. Constraint
(5) indicates that the number of outgoing routes equals the number
of incoming routes for each task and each robot. Constraint (6)
ensures that each task is executed by each robot at most once.
Constraint (7) sets the arrival time and completion time for the
depot to 0. Constraint (8) specifies the relationship between 𝑐𝑡 𝑗 ,
𝑎𝑡 𝑗,𝑘 and 𝑥𝑘

𝑖,𝑗
. Constraint (9) implies that a task is completed when

its demand decreases to zero (i.e. the accumulated demand from time
0 to 𝑐𝑡 𝑗 equals the total demand reduced by the robots executing

the task during this time period). It also shows the time-varying
characteristic of the task demand. Constraint (10) indicates that for
each task, the total ability of the robots executing it must be greater
than its inherent increment rate. Otherwise, the task can never be
completed. Constraint (11) indicates the number of assigned robots
is no greater than the number of robots in the depot. Constraint
(12) sets the binary domain of the decision variables.

2.1.2 Bound determination. There is a scope of the cost of used
robots for a specific MO-MPDA problem. Then, the low bound and
upper bound of the number of used robots can be calculated by Eqs.
(13) and (14).

𝐾𝑙𝑏 = ⌈
max𝑖∈{1, · · · ,𝑁 } 𝛼𝑖

𝛽
⌉ (13)

𝐾𝑢𝑏 =

𝑁∑︁
𝑖=1

⌈𝛼𝑖
𝛽
⌉ (14)

where ⌈⌉ represents a ceiling function, 𝐾𝑙𝑏 indicates the minimal
number of used robots which ensures every task can be completed,
and 𝐾𝑢𝑏 indicates the maximal number of used robots which en-
sures all the tasks can be executed by one assignment.

2.2 Related Work
2.2.1 MPDA. There are several approaches proposed to address
the MPDA problem. Hao et al. proposed an evolutionary computa-
tion method hybrid with differential evolution and estimation of
distribution algorithm [14]. Comparison experiments showed that
the hybrid method outperforms the differential evolution in terms
of the convergence speed and solution quality. Xin et al. proposed an
estimation of distribution algorithm with two different probability
models to address the MPDA problem [35]. The method [35] outper-
forms the genetic algorithm due to the two probability models. Gao
et al. proposed a genetic programming hyper-heuristic method to
evolve the execution rules of robots in MPDA. Experiments showed
that the automatic evolved rules significantly achieved a better
performance than the state-of-the-art manually designed rules.

2.2.2 DMOEA-𝜀C. Zhang et al. firstly proposed a multi-objective
evolutionary algorithm based on decomposition (MOEA/D) in 2007
[37]. The algorithm shows very promising results for approximating
the Pareto front. The main idea of MOEA/D is the decomposition
mechanism, the method decomposes a multi-objective optimisation
problem into a number of scalar optimisation subproblems[2, 20, 34].
Each subproblem learns valid information from its neighbouring
subproblems so that all the subproblems are evolved parallel and
efficiently. Thank to the collaborative optimisation mechanism, the
MOEA/D method has a fast computation speed. Since a scalar of
weight vectors uniformly splits the solution space, the MOEA/D
method also has a good population diversity.

DMOEA-𝜀C belonging to MOEA/D firstly combined MOEA/D
methods and the 𝜀-constraint to address a multi-objective prob-
lem [4]. In DMOEA-𝜀C, a multi-objective problem is decomposed
into several constrained optimisation subproblems with different
upper bounds. The DMOEA-𝜀C method simultaneously optimises
these constrained optimisation subproblems using their neighbour
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Figure 3: An example of the decoding processes with a given
encoding for MO-MPDA.

information. The details of DMOEA-𝜀C are shown as follows[5].

minimize 𝑓𝑚𝑎𝑖𝑛 = 𝑓𝑠 (x) + 𝜌
𝑚∑
𝑖=1

𝑓𝑖 (x)

subject to

{
𝑓𝑖 (x)−𝑧∗𝑖
𝑧𝑛𝑎𝑑
𝑖

−𝑧∗
𝑖

≤ 𝜀𝑖 ,∀𝑖 ∈ {1, 2, · · · ,𝑚}/{𝑠}
x = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ Ω

(15)

where 𝑠 represents the predefined main objective index, 0 ≤ 𝜀 =

(𝜀1, ..., 𝜀𝑠−1, 𝜀𝑠+1, ..., 𝜀𝑚) ≤ 1 is the upper bound vector, 𝜌 is a small
positive number, z∗ = (𝑧∗1, ..., 𝑧

∗
𝑚) and znad = (𝑧𝑛𝑎𝑑1 , ..., 𝑧𝑛𝑎𝑑𝑚 ) are

the ideal point and the nadir point, respectively.

3 THE PROPOSED DMOEA-𝜀C ALGORITHM
3.1 Encoding and Decoding
3.1.1 Encoding. The explicit representation of the execution plan
of all the robots in the MPDA problem is a variable-length sequence
of events. To simplify the representation, an implicit representation
of a solution for the MO-MPDA problem is adopted in this paper,
which is a matrix and shown in (16):

𝑋 =


𝜋1, [1] 𝜋1, [2] · · · 𝜋1, [𝑁 ]
𝜋2, [1] 𝜋2, [2] · · · 𝜋2, [𝑁 ]
.
.
.

.

.

.
.
.
.

.

.

.

𝜋𝑚, [1] 𝜋𝑚, [2] · · · 𝜋𝑚, [𝑁 ]


. (16)

Each row of the given matrix has 𝑁 integral elements which is a
permutation of all tasks’ indexes. Similar to the representation in
VRPs [24, 32], the elements of one row indicate the task-executing
sequences. For example, if 𝑖th row is [2, 3, 1], 𝑟𝑜𝑏𝑖 will intend to
execute tasks 𝑣2, 𝑣3 and 𝑣1 in order.

3.1.2 Decoding. The decoding method used in this paper adopts
the event trigger mechanism. When a robot completes a task, it
becomes active and selects its next executing task according to
the corresponding encoding. The details of the decoding method
are similar to the decoding process in [11, 12]. Fig. 3 shows a 3-
robot-5-task example of the decoding process of the MO-MPDA
problemwith a given encoding. 𝑣5 which is executed by three robots
simultaneously is the last completed task. Thus, for the MO-MPDA
problem, the first objective of the example solution in Fig. 3 is the
completion time of 𝑣5, and the second objective is 3.

Some elements in a given encoding is redundant since a robot
usually does not visit all tasks. In this paper, the number of invalid

elements in a row is denoted as 𝑖𝑒𝑘 . For example, 𝑖𝑒3 of 𝑟𝑜𝑏3 is 3 in
Fig. 3. It also should be noticed that many encoding representations
have the same objective values as robots are homogeneous. For
example, swapping the visiting sequences of 𝑟𝑜𝑏1 and 𝑟𝑜𝑏2 in Fig. 3
does not affect the two objective values.

3.2 Framework
In this paper, the new DMOEA-𝜀C method proposed for MO-MPDA
selects the makespan objective as the main objective, and converts
the number of used robots as the constraints. The formulation
details are shown as follows.

minimize 𝑓𝑚𝑎𝑖𝑛 = 𝑓1 (x) + 𝜌 𝑓2 (x)

subject to

{
𝑓2 (x)−Klb
𝐾𝑢𝑏−𝐾𝑙𝑏 ≤ 𝜀𝑖
x ∈ Ω

(17)

where the calculation methods for 𝑓1 and 𝑓2 are shown in Eqs (2)
and (3).

The framework of the proposed DMOEA-𝜀C method is shown
in Algorithm 1. DMOEA-𝜀C contains four main components, 1)
initialisation, 2) reproduction, 3) matching, and 4) Pareto updating.
In the method, 𝑅 upper bounds for the number of used robots are
maintained for the evolutionary process, where 𝑅 is the population
size. At the beginning of DMOEA-𝜀C, 𝑅 solutions are randomly
initialised. Then, the rest three components of DMOEA-𝜀C are
run iteratively until the maximal number of fitness evaluations is
reached. In each generation of the proposed method, |𝐼 | individuals
are selected to reproduce new individuals Y firstly. Second, each
of the newly generated individuals Y is matched to a subproblem
using the proposed matching method. Finally, the external archive
EP is updated according to the current population.

3.3 Initialisation
After the range for the number of used robots is calculated, a series
of scalar upper bounds 𝜀 = (𝜀1, 𝜀2, ..., 𝜀𝑅) are generated by a fixed
interval △ = 1/(𝑅 − 1). Accordingly, the multi-objective problem
can be decomposed into 𝑅 subproblems. The formulation for a
subproblem 𝑠𝑝𝑖 in DMOEA-𝜀C is shown as Eq. (17).

Due the integer characteristic of the robot number, it is obvious
that the optimal number of robots for a subproblem 𝑠𝑝𝑖 is ⌊𝜀𝑖 (𝐾𝑢𝑏 −
𝐾𝑙𝑏 )+𝐾𝑙𝑏⌋, denoted by𝑚𝑖 . Thus, an initial individual with𝑚𝑖 robots
for a subproblem 𝑠𝑝𝑖 is generated randomly. It should be noticed
that different subproblems may have the same optimal number of
robots. After initialising the individuals, DMOEA-𝜀C determines the
neighbourhood 𝐵(𝑖) for each subproblem and sets the same utility
value of subproblems for dynamic resource allocation [38]. At the
end of initialisation component, the number of fitness evaluations
and generation are set to 𝑅 and 0 respectively.

3.4 Reproduction
A new reproduction mechanism is designed in this paper to gener-
ate diversified offspring for propagating useful information. Recall
that each individual is represented as multiple permutations of the
tasks’ indexes, and previous researchers have developed a number
of crossover operators and mutation operators [16, 27]. The pro-
posed reproduction mechanism is based on the classical crossover
operator (i.e. partially matched crossover) and mutation operator
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Algorithm 1: The proposed DMOEA-𝜖C method
Input: A MO-MPDA instance, related parameters.
Output: An external archive population EP.

1 Calculate the upper and low bounds for the number of used robots,
and generate 𝑅 evenly spread upper bound vectors;

2 According to the upper and low bounds and spread bound vectors,
initialise the evolving population Pop = {x1, x2 . . . , xR } randomly;

3 Evaluate each individual in Pop;
4 Extract nondominated individuals from Pop denoted as EP;
5 for 𝑖 = 1 → 𝑅 do
6 Determine the neighbourhood 𝐵 (𝑖) of the 𝑖th subproblem;
7 Set the utility value Π𝑖 of the 𝑖th subproblem for the dynamic

resource allocation;
8 end
9 𝑔𝑒𝑛 = 0, 𝑛 = 𝑅;

10 if 𝑔𝑒𝑛 is a multiple of 𝐷𝑅𝐴_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 then
11 Update the indices of the subproblem 𝐼 that will be evolved in

the next generations using the dynamic resource allocation
mechainism in [38].

12 end
13 while 𝑛 ≤ 𝑁𝐹𝐸 do
14 for 𝑖 ∈ 𝐼 do

15 𝑃 =

{
𝐵 (𝑖), if 𝑟𝑎𝑛𝑑 () < 𝛿
{1, 2, ..., 𝑅 }, otherwise

16 Use the proposed reproduction mechanism to generate
offspring individuals Y from parent individuals 𝑃 (
Algorithm 2 ) ;

17 for 𝑌 ∈ Y do
18 if 𝑌 is infeasible then
19 Repair 𝑌 ;
20 end
21 Evaluate the new individual 𝑌 , 𝑛 = 𝑛 + 1;
22 Find the suitable subproblem 𝑠𝑝𝑖∗ for the new

individual 𝑌 using the proposed mathcing
mechanism (Algorithm 3);

23 Compare 𝑌 with the individual of the subproblem 𝑠𝑝𝑖∗ ,
and update individual and neighbouring individuals
of the subproblem 𝑠𝑝𝑖∗ .

24 Update the external archive EP and utility values Π ;
25 end
26 end
27 𝑔𝑒𝑛 = 𝑔𝑒𝑛 + 1;
28 end
29 return EP

(i.e. swap mutation) [17]. The details of the proposed reproduction
mechanism are shown in Algorithm 2.

In the reproduction mechanism, there are two different genera-
tion operators for offspring individuals. When a sampled value is
less than 𝛿𝑔 , the new offspring individuals are generated by the de-
signed crossover operator. Otherwise, the new offspring individuals
are generated by the designed mutation operator.

Since the robots in theMO-MPDAproblem are homogeneous, the
permutation encoding has a certain redundancy. At the beginning
of the designed crossover operator, permutations in each parent
individual are sorted according to the number of invalid elements
and task indexes to address the redundancy issue. Then, the two

Algorithm 2: The new reproduction mechanism
Input: Parents individuals 𝑋𝑎 and 𝑋𝑏 .
Output: New generated offspring individuals Y.

1 if 𝑟𝑎𝑛𝑑 < 𝛿𝑔 then
2 Sort 𝑋𝑎 and 𝑋𝑏 based on the number of invalid elements and

task indexes from small to large;
3 if 𝑋𝑎 and 𝑋𝑏 have the same number of used robots then
4 for 𝑖 = 1 → 𝑓2 (𝑋𝑎) do
5 The partially matched crossover is applied to 𝑋𝑎,𝑖 and

𝑋𝑏,𝑖 for generating offspring permutations 𝑌𝑎,𝑖 and
𝑌𝑏,𝑖 ;

6 end
7 Y = {𝑌𝑎, 𝑌𝑏 };
8 else
9 for 𝑖 = 1 → min{𝑓2 (𝑋𝑎), 𝑓2 (𝑋𝑏 ) } do
10 The partially matched crossover is applied to 𝑋𝑎,𝑖 and

𝑋𝑏,𝑖 for generating offspring permutations 𝑌𝑎,𝑖 and
𝑌𝑏,𝑖 ;

11 end
12 Y = {𝑌𝑎, 𝑌𝑏 };
13 if 𝑓2 (𝑌𝑎) > 𝑓2 (𝑌𝑏 ) then
14 Swap 𝑌𝑎 and 𝑌𝑏 ;
15 end
16 for 𝑖 = 1 → min{

(𝑓2 (𝑌𝑎 )
𝑓2 (𝑌𝑏 )

)
, 10} do

17 Select 𝑓2 (𝑌𝑎) permutations randomly from 𝑌𝑏 to
construct 𝑌𝑐 ;

18 Y = Y ∪𝑌𝑐 ;
19 end
20 for 𝑖 = 1 → min{𝑓2 (𝑋𝑎), 𝑓2 (𝑋𝑏 ) } do
21 Swap 𝑋𝑎,𝑖 and 𝑋𝑏,𝑖 purely for generating offspring

permuations 𝑌𝑝,𝑖 and 𝑌𝑞,𝑖 ;
22 end
23 Y = Y ∪ {𝑌𝑝 , 𝑌𝑞 };
24 end
25 else
26 Swap mutation operates each permutation of 𝑋𝑎 and 𝑋𝑏 to

generate offspring 𝑌𝑎 and 𝑌𝑏 ;
27 Y = {𝑌𝑎, 𝑌𝑏 };
28 end
29 return Y

Algorithm 3: The proposed matching mechanism
Input: Newly generated individual 𝑌 , all subproblems with

different bound constraints{𝜀1,𝜀2 ...,𝜀𝑅 }
Output: The selected subproblem 𝑠𝑝𝑖∗ of population Pop

1 for 𝑖 = 1 → 𝑅 do
2 𝐶𝑉 𝑖 = min(𝜀𝑖 − 𝑓2 (𝑌 )−𝐾𝑙𝑏

𝐾𝑢𝑏−𝐾𝑙𝑏 , 0) ;
3 if 𝐶𝑉 𝑖 ≠ 0 then
4 𝐶𝑉 𝑖 = 𝑓1 (𝑠𝑜𝑙𝑖 )
5 end
6 end
7 𝑖∗ = argmax𝑖∈{1,2,...,𝑅} {𝐶𝑉 1,𝐶𝑉 2, . . . ,𝐶𝑉𝑅 };
8 return 𝑠𝑝𝑖∗

situations are distinguished. The first situation is that the parent
individuals 𝑋𝑎 and 𝑋𝑏 have the same number of used robots. For
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each permutation of the parent individuals, the partially matched
crossover generates offspring permutations to construct the new
offspring individuals Y. When the parent individuals 𝑋𝑎 and 𝑋𝑏
have different numbers of used robots, the new offspring individuals
Y are constructed by three parts:

1) Similar to the generation method in the situation with the
same robot number, the first part of the new offspring individuals
is generated based on the partially matched crossover.

2) Let the individual with a larger number of robots in the first
part be 𝑌𝑏 . The second part of offspring individuals is based on
the first part, and it is constructed by selecting 𝑓2 (𝑌𝑎) permuta-
tions from 𝑌𝑏 to construct new individuals. The number of newly
constructed individuals in the second part is determined by the
binomial coefficient

(𝑓2 (𝑌𝑎)
𝑓2 (𝑌𝑏 )

)
and hyper-parameter 10.

3) The last part is generated by inheriting the alleles from the
two-parent individuals with no implicit mutations.

3.5 Matching
After generating a new offspring individual, DMOEA-𝜀C needs to
determine which subproblem is suitable for the individual. This
paper designs a subproblem-to-individual matching mechanism to
make the best use of information of offspring individuals, details of
which are shown in Algorithm 3. In the matching procedure, the
subproblem that does not violate constraints and has the maximal
makespan objective is selected to comparewith the newly generated
individual. Since the feasibility rule is implicitly adopted to handle
these constrained subproblems, the proposed matching mechanism
has a positive impact on the population convergence.

4 EXPERIMENTAL SETTING
4.1 Data Set and Performance Metrics
Since there is no existing benchmark set for theMO-MPDAproblem,
we propose a new benchmark set for the MO-MDPA problem to
test the performances of algorithms. The settings of instances of
the MO-MPDA problem including the number of tasks, task initial
demands, the position of tasks, and inherent increment rates follows
the settings of the most comprehensive MPDA benchmark set [11].
The ability of each robots in the designed MO-MPDA benchmark
is set as the mean ability of all robots in the single-objective MPDA
benchmark set [11]. These instances are named by the number of
tasks, the position of depot and tasks, and the ratio of the mean
inherent increment rates to the robot ability.

Two commonly used performance metrics, i.e., inverted gener-
ational distance (IGD) [39] and hypervolume (HV) [40] are em-
ployed to evaluate the performance of all compared algorithms in
this paper. IGD and HV assess the quality of a nondominated set
in terms of convergence and diversity, and their definitions uses
the true pareto front. However, the ture pareto front of the MO-
MPDA problem is very difficult to obtained due to the complexity
of the problem. In this paper, we approximate the true pareto front
by selecting non-dominated solutions from all the compared and
designed algorithms [15].

Since the scope of a objective value of MO-MPDA (especially
the makespan objective) is very large, this paper normalises these
objective function values. The IGD and HV values are calculated

(a) 10-EC-RC-1.86 (b)20-EC-CL-0.54

(c)30-C-R-4.29 (d)60-C-CL-1.0

Figure 4: Final Pareto solutions of different methods for the
selected problem instances.One of the Pareto fronts within
20 runs is displayed for illustration in each selected instance.

based on the normalised objectives of which the range is [0,1], the
normalisation methods are shown in Eqs. (18) and (19).

𝑓1𝑛 =
ln(max𝑖∈{1,2,...,𝑁 } 𝑐𝑡𝑖 ) − 2 ln(10)

6 ln(10) − 2 ln(10) (18)

𝑓2𝑛 =
𝐾 − 𝐾𝑙𝑏
𝐾𝑢𝑏 − 𝐾𝑙𝑏

(19)

where max𝑖∈{1,2,...,𝑁 } 𝑐𝑡𝑖 and 𝐾 represent the two objective values
of MO-MPDA, and 𝑓1𝑛 and 𝑓2𝑛 represents the first and second
normalised objective values. The large constant 106 and the small
constant 102 are viewed as the upper bound and the lower bound
of the makespan in nomalisation respectively. The point (1.1, 1.1)
is used as the reference point in this paper for calculating the HV
metric.

4.2 Parameter Settings and Competitor
Algorithms

Since the MO-MPDA problem is a novel problem and no existing
algorithms can be directly applied for comparison, we compare
DMOEA-𝜀C with the following state-of-the-art methods: NSGA-II
[6], MOEA/D-DRA[38], MOEA/D-M2M [23], and MOEA/D-VLP
[19].

All the competitor methods and DMOEA-𝜖C for the MO-MPDA
problem are implemented based on a Python evolutionary com-
putation framework [10] to keep fair comparisons. The parameter
settings of all the methods used in the rest of this paper follow the
conventional settings [4, 21, 37]. For each instance, all the algo-
rithms we run 20 times independently.

5 EXPERIMENTAL RESULTS AND DISCUSSION
5.1 Comparisons with State-of-the-Art

Algorithms
The overall results of the compared four state-of-the-art methods
and DMOEA-𝜖C method are shown in Tables 1 and 2, including the
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Table 1: Statistical Results of Five Methods over 20 Independent Runs in Terms of IGD

Instance NSGA-II [6] MOEA/D-DRA [38] MOEA/D-M2M [23] MOEA/D-VLP [19] DMOEA-𝜖C
10-EC-RC-1.86 6.69E-2(8.5E-3)(-) 7.56E-2(6.7E-3)(-) 7.42E-2(1.2E-2)(-) 8.35E-2(8.2E-3)(-) 4.91E-2(8.5E-3)
10-EC-CL-0.54 9.05E-3(3.8E-3)(-) 2.56E-2(6.3E-3)(-) 2.03E-2(6.6E-3)(-) 2.77E-2(2.5E-3)(-) 5.44E-3(1.4E-3)
20-EC-CL-0.54 2.11E-2(2.5E-3)(-) 3.58E-2(1.9E-3)(-) 3.14E-2(2.8E-3)(-) 3.60E-2(1.7E-3)(-) 1.24E-2(1.6E-3)
30-C-RC-1.86 7.38E-2(5.0E-3)(-) 8.55E-2(3.3E-3)(-) 8.18E-2(5.0E-3)(-) 9.32E-2(3.5E-3)(-) 5.80E-2(3.8E-3)
30-C-R-4.29 1.11E-1(8.7E-3)(-) 1.32E-1(5.6E-3)(-) 1.16E-1(8.3E-3)(-) 1.43E-1(4.6E-3)(-) 9.42E-2(8.2E-3)
40-C-CL-1.86 7.14E-2(5.5E-3)(-) 8.53E-2(2.0E-3)(-) 7.74E-2(2.8E-3)(-) 9.01E-2(2.4E-3)(-) 5.78E-2(3.6E-3)
60-C-CL-1.0 4.24E-2(2.6E-3)(-) 5.25E-2(1.9E-3)(-) 5.15E-2(3.1E-3)(-) 5.57E-2(1.9E-3)(-) 3.69E-2(2.7E-3)
60-C-CL-1.0a 5.16E-2(2.9E-3)(-) 6.15E-2(1.8E-3)(-) 5.93E-2(2.8E-3)(-) 6.49E-2(1.7E-3)(-) 4.58E-2(2.7E-3)
(+)/(≈)/(-) 0/0/8 0/0/8 0/0/8 0/0/8 –

Table 2: Statistical Results of Five Methods over 20 Independent Runs in Terms of HV

Instance NSGA-II [6] MOEA/D-DRA [38] MOEA/D-M2M [23] MOEA/D-VLP [19] DMOEA-𝜖C
10-EC-RC-1.86 8.41E-1(2.5E-2)(-) 8.24E-1(1.8E-2)(-) 8.46E-1(3.4E-2)(-) 8.00E-1(2.5E-2)(-) 8.84E-1(2.4E-2)
10-EC-CL-0.54 1.02E+0(1.2E-3)(-) 1.00E+0(2.5E-3)(-) 1.01E+0(1.3E-3)(-) 9.97E-1(1.9E-3)(-) 1.02E+0(1.3E-3)
20-EC-CL-0.54 1.00E+0(8.4E-4)(-) 9.89E-1(1.3E-3)(-) 9.93E-1(1.9E-3)(-) 9.84E-1(1.3E-3)(-) 1.01E+0(1.5E-3)
30-C-RC-1.86 8.41E-1(1.3E-2)(-) 8.07E-1(8.4E-3)(-) 8.29E-1(1.5E-2)(-) 7.94E-1(1.1E-2)(-) 8.74E-1(1.0E-2)
30-C-R-4.29 7.24E-1(2.1E-2)(-) 6.86E-1(1.1E-2)(-) 7.17E-1(2.0E-2)(-) 6.69E-1(1.0E-2)(-) 7.52E-1(1.8E-2)
40-C-CL-1.86 8.33E-1(1.7E-2)(-) 7.98E-1(7.4E-3)(-) 8.22E-1(8.9E-3)(-) 7.88E-1(9.5E-3)(-) 8.60E-1(9.6E-3)
60-C-CL-1.0 9.08E-1(6.1E-3)(-) 8.77E-1(6.8E-3)(-) 8.90E-1(6.1E-3)(-) 8.69E-1(5.9E-3)(-) 9.18E-1(7.6E-3)
60-C-CL-1.0a 8.95E-1(7.0E-3)(-) 8.64E-1(5.5E-3)(-) 8.79E-1(6.6E-3)(-) 8.58E-1(5.7E-3)(-) 9.05E-1(7.0E-3)
(+)/(≈)/(-) 0/0/8 0/0/8 0/0/8 0/0/8 –

Table 3: Statistical Results of DMOEA-𝜖C-TR and DMOEA-𝜖C
in Terms of IGD

Instance DMOEA-𝜖C-TR DMOEA-𝜖C
10-EC-RC-1.86 4.33E-2(5.9E-3)(+) 4.91E-2(8.5E-3)
10-EC-CL-0.54 5.97E-3(1.8E-3)(≈) 5.68E-3(1.2E-3)
20-EC-CL-0.54 1.64E-2(1.3E-3)(-) 1.24E-2(1.6E-3)
30-C-RC-1.86 6.05E-2(2.3E-3)(-) 5.80E-2(3.8E-3)
30-C-R-4.29 9.87E-2(5.0E-3)(-) 9.42E-2(8.2E-3)
40-C-CL-1.86 6.20E-2(1.7E-3)(-) 5.78E-2(3.6E-3)
60-C-CL-1.0 3.84E-2(1.8E-3)(-) 3.69E-2(2.7E-3)
60-C-CL-1.0a 4.73E-2(2.0E-3)(-) 4.58E-2(2.7E-3)
(+)/(≈)/(-) 1/1/6 –

Table 4: Statistical Results of DMOEA-𝜖C-TR and DMOEA-𝜖C
in Terms of HV

Instance DMOEA-𝜖C-TR DMOEA-𝜖C
10-EC-RC-1.86 8.91E-1(1.4E-2)(≈) 8.84E-1(2.4E-2)
10-EC-CL-0.54 1.02E+0(8.0E-4)(≈) 1.02E+0(1.4E-3)
20-EC-CL-0.54 1.00E+0(7.4E-4)(-) 1.01E+0(1.5E-3)
30-C-RC-1.86 8.69E-1(5.5E-3)(-) 8.74E-1(1.0E-2)
30-C-R-4.29 7.47E-1(1.1E-2)(-) 7.52E-1(1.8E-2)
40-C-CL-1.86 8.54E-1(4.9E-3)(-) 8.60E-1(9.6E-3)
60-C-CL-1.0 9.14E-1(5.3E-3)(-) 9.18E-1(7.6E-3)
60-C-CL-1.0a 9.02E-1(5.1E-3)(-) 9.05E-1(7.0E-3)
(+)/(≈)/(-) 0/2/6 –

mean and standard deviation of the performancemetrics over all the
independent runs. Wilcoxon rank-sum test with a 5% significance
level and Bonferroni correction are used to verify the statical results.
For each compared algorithm, “(+)”, “(≈)”, and “(−)” indicate that
the compared algorithm performed significantly better, statistically
comparable, and significantly worse than the DMOEA-𝜖C method,
respectively.

From the Tables 1 and 2, it can be observed that DMOEA-𝜖C
proposed in this paper is significantly better than other comparison

methods in terms of IGD and HV. TheMO-MPDA planning problem
has difficulties such as huge solution space and redundancy repre-
sentation. These methods do not use the domain knowledge of the
MO-MPDA problem during the evolutionary process. In contrast,
DMOEA-𝜖C effectively utilises the domain knowledge of the MO-
MPDA problem. DMOEA-𝜖C can effectively focus on the potentially
promising solutions by allocating more computational resources.
Besides, the subproblems in DMOEA-𝜖C can be co-evolved, and
they can learn useful knowledge from subproblems with similar
robot numbers.

Fig. 4 shows the Pareto fronts of these five methods for the
selected problem instances. From Fig. 4, it can be seen that the
uniformity of the non-dominated individuals obtained by MOEA/D-
𝜀C is obviously better than the other comparisonmethods. However,
all the methods do not perform well for subproblems with tight
constraints, in which a small number of robots are used.

Overall, it can be concluded that MOEA/D-𝜀C outperforms the
state-of-the-art methods in solving MO-MPDA.

5.2 Effectiveness of the Reproduction
Mechanism

To verify the effectiveness of the proposed reproduction mecha-
nism for offspring individuals, we adopt the DMOEA-𝜖C method
with a traditional reproduction mechanism in [13] as a control
group, which is denoted as DMOEA-𝜖C-TR. The partially matched
crossover is applied to each permutation of the parent individuals
to construct the new offspring individuals in the DMOEA-𝜖C-TR
method. Tables 3 and 4 show the comparison results of DMOEA-
𝜖C-TR and DMOEA-𝜖C in terms of IGD and HV.

In view of the statistical results in Tables 3 and 4, DMOEA-𝜖C
outperforms DMOEA-𝜖C-TR on most tested instances. For the in-
stances with a small number of tasks (e.g. 10-EC-RC-1.86 and 10-EC-
CL-0.54), the performance of MOEA/D-𝜀C is slightly worse than the
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performance of MOEA/D-𝜀C-TR. The reason may be that MOEA/D-
𝜀C-TR, which only uses the partially matched crossover operator,
has a strong ability of implicit mutation while generating offspring
individuals. The strong implicit mutation leads that MOEA/D-𝜀C-
TR have a good exploration ability, and it makes MOEA/D-𝜀C-TR
easy to jump out of the local optima in the small-scale solution space.
However, for the medium-scale and large-scale solution spaces,
MOEA/D-𝜀C that can transmit the information to offspring individ-
uals more effectively gets better performance than MOEA/D-𝜀C-TR.

6 CONCLUSION
The goal of this paper was to solve an emerging and novel MO-
MPDA problem from real-world applications. Due to the complex
dependencies among robots and tasks, the redundant encoding, and
variable-size decision space, the MO-MPDA problem is very chal-
lenging. The goal of this paper has been successfully achieved by
proposing a MO-MPDA model and designing an elaborate DMOEA-
𝜖Cmethod. Specifically, the novel reproduction andmatchingmech-
anisms are proposed respectively to promote the effectiveness and
efficiency of DMOEA-𝜖C. Experimental results show that DMOEA-
𝜖C significantly outperforms the state-of-the-art methods in terms
of IGD and HV. The effectiveness and necessity of proposed repro-
duction mechanism are also validated by the comparison experi-
ments.

There are still some aspects that need to be further investigated
to cope with real-world applications: 1) considering the communi-
cation delay and loss problem among robots; and 2) implementing
a practical multirobot system to verify algorithms for the MPDA
problem.
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