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Abstract— In this paper, the high-speed railway train
timetable rescheduling (TTR) problem with disturbances of
trains running in sections and stations is analyzed. It is
formulated as a multi-objective optimization problem that
minimizes the total train delays and the frequency of adjusting
train arrival/departure time. In order to solve the problem,
a novel nondominated sorting genetic algorithm-II (NSGA-II)
is proposed for TTR. A multi-permutation encoding method
is developed to decide the departure orders of the trains at
different stations. A rule-based decoding method determines
the trains’ feasible schedule according to the departure orders.
The constraints to model the train operation are handled
through encoding and decoding. To improve the quality of the
initial population, one or more Pareto optimal and suboptimal
(near Pareto optimal) solutions are included into the initial
population, which achieves the utilization of the information
and knowledge of TTR in problem-solving. We investigate the
effectiveness of the proposed NSGA-II with multi-permutation
encoding and the effects of including one or more Pareto opti-
mal solution(s) in the initial population. The experiment results
show that including optimal solutions significantly improves the
performance of NSGA-II.

I. INTRODUCTION

High-speed railway (HSR) intelligent dispatching com-
mand is an important part of the HSR operation [1]. The
total operating mileage of China’s HSR has reached 42000
km by the end of 2022. Due to the large density of HSR, train
operations may be affected by train delays when disturbance
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or disruption occurs. Train timetable rescheduling (TTR) is
conducted to help recover to regular operation.

When train operation is disturbed, additional time for
trains running in sections or dwelling in stations will be
included. Therefore, rescheduling strategies should be con-
ducted, including the adjustments of arrival/departure time
in stations and traversing order in sections to minimize the
spread of train delays. The TTR problem has been ana-
lyzed in many studies, which is belong to non-deterministic
polynomial hard (NP-hard) [2]. The problem is formulated
with one or multiple objectives. Binder et al. [3] formu-
lated an integer programming model optimizing passenger
satisfaction, operational costs, and the deviation from the
undisrupted timetable. ε-constraint method is adopted to
obtain the Pareto front. Shakibayifar et al. [4] proposed a
multi-objective simulation-based optimization framework for
TTR with a partial/full blockage. A multi-objective variable
neighborhood search metaheuristic is proposed to minimize
the total train delay at destination stations and the total
deviation from the original schedule at all stations. Yan et
al. [5] studied a TTR problem with two objectives, including
minimizing the additional train delays due to the disturbance
of trains running in section and dwelling in stations and
the frequency of adjusting train arrival/departure time. An
improved ε-constraint method is adopted to obtain the Pareto
front. However, obtaining the entire Pareto front is time-
consuming. At the same time, railway dispatcher is only
interested in part of the front, and dispatching should be
conducted in real time.

Evolutionary algorithm (EA) is usually used to tackle the
NP-hard problems [6]. Ding et al. [7] developed a memetic
algorithm to solve the TTR problem, minimizing the total
train delay with a high real-time performance. Wang et al.
[8] proposed an efficient problem-specific strengthen elitist
genetic algorithm. An efficient heuristic strategy is used for
population initialization for better convergence. Using Opti-
mal/suboptimal solutions for population initialization is also
an effective way for multi-objective optimization problems
[9]. We improve the results in [5] with less computation
time and only part of the Pareto front for better decision-
making. A multi-permutation encoding method and a rule-
based decoding method are developed to deal with the
constraints of the TTR problem. Moreover, a novel nondom-
inated sorting genetic algorithm-II (NSGA-II) is developed
with optimal and suboptimal solutions for initialization and
new mechanisms for population crossover and mutation.
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TABLE I
SUMMARY OF NOTATIONS.

Symbol Description
Indices

i, l ∈ T Index of train
j ∈ J Index of station
k ∈ K Index of section

Parameters
T Set of trains
J Set of stations
K Set of sections
Ta
i,j The arrival time of train i at station j in the orignal schedule

T d
i,j The departure time of train i at station j in the orignal

schedule
train i stops at station j and 0 otherwise

dmin
i,j The minimum dwell time at station j for train i

rmin
k The minimum running time at section k
Hk The minimum headway between two consecutive trains of the

same direction at section k
M A large positive number
ddisi,j Additional dwell time when disturbance occurs on train i at

station j
rdisi,k Additional running time when disturbance occurs on train i at

section k
Jdis Set of stations with dwell time disturbance on trains
Kdis Set of sections with running time disturbance on trains

Decision variables
tai,j Actual arrival time of train i at station j

tdi,j Actual departure time of train i at station j

qi,l,k Actual traversing order which is 1 if train i traverses at
section k before train l and 0 otherwise

The remainder of this paper is organized as follows.
The proposed model is presented in Section II. Section III
presents a novel NSGA-II for solving the TTR. The perfor-
mance of the proposed algorithm is evaluated in Section IV.
Finally, Section V presents the conclusions and future work.

II. PROBLEM FORMULATION

A. Assumptions

1) The upstream and downstream trains are operated sep-
arately on their side of tracks and platforms. Therefore,
only one side is modeled for rescheduling.

2) The types of disturbance during the train operation
are the disturbance of trains running in sections and
dwelling in stations, which are reflected as additional
running time and dwell time.

3) Multiple disturbances exist with known affected time.
4) The capacity of the station for train platforming is

enough.

B. Parameters and Decision Variables

Table I summarizes all the notations used throughout this
paper.

C. Objective Function

There are two objective functions of the TTR problem.
The first objective function is minimizing the total arrival
and departure delay for all trains.

min F1 =
∑
i∈T

∑
j∈J

(tai,j − T a
i,j) +

∑
i∈T

∑
j∈J

(tdi,j − T d
i,j) (1)

The second objective function is minimizing the frequency
of the train schedule adjustments. It is a rescheduling cost
calculated by the total number of train arrival/departure time
adjustments.

min F2=
∑
i∈T

∑
j∈J

sgn(tai,j−T a
i,j)+

∑
i∈T

∑
j∈J

sgn(tdi,j−T d
i,j)

(2)

where sgn(·) returns 1 when the rescheduled
arrival/departure time is later than the original schedule and
returns 0 when there is no adjustment on the arrival/departure
time.

D. Constraints
1) Dwell Time Constraints: The dwell time at station j

should be larger than the minimal dwell time interval to
ensure the operations at the station. For trains with dwell
time disturbance, the dwell time at the stations should be
greater than the original dwell time with the additional dwell
time when disturbance occurs.

tdi,j−tai,j ≥ dmin
i,j ∀i ∈ T ; j ∈ J ; (i, j) /∈ Jdis (3)

tdi,j−tai,j ≥ T d
i,j−T a

i,j+ddisi,j ∀i ∈ T ; j ∈ J ; (i, j) ∈ Jdis

(4)

2) Running Time Constraints: The running time in section
k should exceed the minimum running time. For trains with
running time disturbance, the running time at the sections
should be greater than the original running time with the
additional running time when disturbance occurs.

tai,j+1 − tdi,j ≥ rmin
k ∀i ∈ T ; j ∈ J/{|J |}; (i, k) /∈ Kdis

(5)

tai,j+1 − tdi,j ≥ T a
i,j+1 − T d

i,j + rdisi,k

∀i ∈ T ; j ∈ J/{|J |}; (i, k) ∈ Kdis (6)

3) Headway Constraints: The headway between any two
trains should be larger than the minimum headway to ensure
safety. The trains are assumed to have constant speed at
sections. Therefore, we need to ensure that the headway
is satisfied at the departure and arrival times of trains at
stations.

tdl,j − tdi,j ≥ Hkqi,l,k −M(1− qi,l,k) (7)

tal,j+1 − tai,j+1 ≥ Hkqi,l,k −M(1− qi,l,k) (8)

for all i, l ∈ T , i 6= l, j ∈ J/{|J |}, k = j.
4) Traversing Order Constraints: For any two trains,

either one can traverse at a section before the other.

qi,l,k + ql,i,k = 1 ∀i, l ∈ T ; i 6= l; k ∈ K (9)

5) Departure and Arrival Time Constraints: The actual
departure time should be larger than the original one with the
additional dwell time when disturbances occur. The actual
arrival time should be larger than the original arrival time
with the additional running time when disturbances occur.

tdi,j ≥ T d
i,j + ddisi,j ∀i ∈ T ; j ∈ J (10)

tai,j ≥ T a
i,j + rdisi,k ∀i ∈ T ; j ∈ J ; k = j − 1 (11)

where rdisi,0 = 0, ∀i ∈ T .
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6) Decision Variable Constraints: The following con-
straints define the domain of the decision variables:

tai,j , t
d
i,j ≥ 0 ∀i ∈ T ; j ∈ J (12)

qi,l,k ∈ {0, 1} ∀i, l ∈ T ; i 6= l; j ∈ J/{|J |}; k = j (13)

E. Model Reformulation

Due to the nonlinear terms sgn(·) in (2), the linearization
method is developed. Two auxiliary variables are introduced,
i.e., r1 = [ri,j1 ]|T |×|J| and r2 = [ri,j2 ]|T |×|J|, which are
defined as follows:{

ri,j1 = sgn(tai,j − T a
i,j)

ri,j2 = sgn(tdi,j − T d
i,j)

∀i ∈ T ; j ∈ J (14)

Substituting (2) by (14), a reformulated mixed integer
linear programming (MILP) model is obtained. The proposed
TTR model can be reformulated as follows:

min F1

min F2 =
∑
i∈T

∑
j∈J

ri,j1 +
∑
i∈T

∑
j∈J

ri,j2 (15)

s.t. Mri,j1 ≥ tai,j − T a
i,j ∀i ∈ T ; j ∈ J (16)

Mri,j2 ≥ tdi,j − T d
i,j ∀i ∈ T ; j ∈ J (17)

ri,j1 ≤ tai,j − T a
i,j ∀i ∈ T ; j ∈ J (18)

ri,j2 ≤ tdi,j − T d
i,j ∀i ∈ T ; j ∈ J (19)

ri,j1 , ri,j2 ∈ {0, 1} ∀i ∈ T ; j ∈ J (20)
Constraints (3)− (11). (21)

III. PROPOSED METHOD

A multi-permutation based NSGA-II is proposed in this
section. Encoding and decoding are introduced to deal with
the constraints of the MILP model. The population of the
NSGA-II is initialized with different strategies and updated
using selection, crossover, and mutation operators.

A. Encoding and Decoding

Instead of using real-coded encoding to represent the
arrival and departure time of the timetable, this paper
adopts a multi-permutation encoding method to represent the
traversing order of the trains in different sections. With a
given traversing order of trains for each section, we only
need to determine the arrival and departure times of trains
satisfying the constraints. The advantage of this encoding
method is that all constraints are handled, and no constraint
violations will be generated. This encoding method includes
multiple permutations, each representing the order of trains
in one section between two train stations. The value for each
permutation is within the range [1, |T |] with no repeated
values. The length for each permutation is |T |, which is the
total number of trains. The total number of permutations is
|K|, which is also the total number of sections.

With determined train orders in different sections, a rule-
based decoding method is conducted to determine the arrival
and departure times of trains. A key issue in the decoding
process is to avoid large train delays with less change in the

arrival and departure time as well as the number of schedule
adjustments. Therefore, the arrival and departure times are
determined according to the minimum dwell time, running
time, and headway.

The arrival and departure time of the trains at the first
station is determined only considering the dwell time dis-
turbance, the headway between two consecutive trains, and
the original arrival/departure time. The arrival time is set
for trains at other stations as early as possible, considering
the running time disturbance in the last section, section
running time constraints, headway between two consecutive
trains, and the original arrival time. The departure time is
set considering the dwell time disturbance in the current
station, station dwell time constraints, headway between two
consecutive trains, and the original departure time.

The corresponding rescheduled timetable is obtained
through the above decoding strategy based on the multiple
permutations of the train traversing orders.

B. Population Initialization

Random initialization is usually adopted in EAs to ensure
diversity. However, a good initial population may improve
the solution’s performance and speed up the convergence.
Therefore, the information and knowledge of the TTR are
utilized in problem-solving by adding one or more Pareto
optimal (near Pareto optimal) solutions into the initial pop-
ulation. Three Pareto optimal solutions and one near Pareto
optimal solution are generated. Since there are two objectives
in the TTR problem, the weighted method is adopted to
obtain the optimal solutions with three different weight vec-
tors. Three weight vectors are: weight vector 1 (0.98, 0.02),
weight vector 2 (0.2, 0.8), and weight vector 3 (0.02, 0.98).
The corresponding Pareto optimal solutions are denoted as
op1, op2, and op3, respectively. The near optimal solution
is obtained using the first-come-first-served (FCFS) strategy,
denoted as nop. The initial population is generated by one
or more optimal or near optimal solutions and randomly
initialized ones.

C. Selection, Crossover, and Mutation Operators

When selecting the individuals for crossover and mutation,
the crowding distance is used to rank the parent and child
individuals within the size of the population. The crossover
and mutation operations are different for the proposed multi-
permutation encoding scheme compared with traditional
NSGA-II. We randomly select one permutation from |K| per-
mutations for crossover and mutation, respectively. Modified
order crossover and swap operators are used for the selected
permutation for crossover and mutation in the individual,
respectively [7].

IV. COMPUTATIONAL EXPERIMENTS

This section discusses the performance of the proposed
NSGA-II along with nine variants by including one or
more Pareto optimal and near Pareto optimal solution(s). All
experiments were conducted on a PC with an Intel Core i5-
8265U CPU 1.60GHz and 8 GB internal memory.
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TABLE II
THE MINIMUM RUNNING TIME AT SECTIONS.

No. Section Time/min
1 Beijing South – Langfang 15
2 Langfang – Tianjin South 14
3 Tianjin South – Cangzhou West 14
4 Cangzhou West – Dezhou East 21
5 Dezhou East– Jinan West 17
6 Jinan West – Tai’an 15

A. Performance Metric

To verify the ability of the proposed method, two per-
formance metrics are considered, which both measure the
diversity and convergence of the solutions. They are the
inverted generational distance (IGD) and hypervolume (HV)
[10]. HV is obtained by calculating the hypervolume of the
approximation front with a reference point (nadir point in
this paper). The true Pareto front can be computed by the
improved ε-constraint method [5].

B. Test Instances

We adopt the instances in [5]. The Beijing–Tai’an section
of Beijing–Shanghai HSR line is considered. It is a double-
track railway with altogether 7 stations and 6 sections. 40
trains downstream from 6:00 to 16:00 are considered in the
railway timetable.

The minimum section running time is shown in Table II.
The minimal dwell time for trains at stations is set according
to the original timetable. It is set to 2 min for train stops at
stations and no dwell time for pass-through stations, origin
stations, and destination stations. The minimal headway
between two consecutive trains is set to 4 min. M is set
to 1000.

Three test instances are generated based on the difference
of the disturbances as follows:

Instance No.1: There are only dwell time disturbances
when trains stop at stations. The additional dwell time for
train 2 at Beijing South is ddis2,1 = 20 min. The additional
dwell time for train 20 at Langfang is ddis20,2 = 20 min.
The additional dwell time for train 30 at Beijing South is
ddis30,1 = 20 min.

Instance No.2: There are only running time disturbances
when trains run at sections. The additional running time for
train 4 at Beijing South – Langfang section is rdis4,1 = 15
min. The additional running time for train 18 at Langfang
– Tianjin South section is rdis18,2 = 20 min. The additional
running time for train 32 at Beijing South – Langfang section
is rdis32,1 = 20 min.

Instance No.3: There are both dwell time and running
time disturbances. The additional dwell time for train 3 at
Beijing South is ddis3,1 = 20 min. The additional dwell time
for train 25 at Langfang is ddis25,2 = 10 min. The additional
dwell time for train 33 at Beijing South is ddis33,1 = 15 min.
The additional running time for train 6 at Beijing South –
Langfang section is rdis6,1 = 15 min. The additional running
time for train 15 at Langfang – Tianjin South section is
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Fig. 1. Performance of the NSGA-II variants over 20 runs on the average
IGD.
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Fig. 2. Performance of the NSGA-II variants over 20 runs on the average
HV.

rdis15,2 = 20 min. The additional running time for train 28
at Beijing South – Langfang section is rdis28,1 = 20 min.

C. Algorithm Settings

In this paper, NSGA-II is used as the algorithm framework.
Different variants of NSGA-II are proposed by modifying the
initialization with one or more Pareto optimal (near Pareto
optimal) solutions. Nine subsets of the three Pareto optimal
and one near Pareto optimal solutions are used to develop
the NSGA-II variants. They are {op1}, {op2}, {op3}, {op1,
op2}, {op1, op2, op3}, {nop}, {nop, op1}, {nop, op2},
{nop, op1, op2} where solution op1-3 are the Pareto optimal
solutions with different weight vectors, and solution nop
is a near Pareto optimal solution which is obtained by
FCFS. The variants of NSGA-II with a different initialization
population are named by the included solutions, which are
NSGA-II op1, NSGA-II op2, NSGA-II op3, NSGA-II op12,
NSGA-II op123, NSGA-II nop, NSGA-II op1nop, NSGA-
II op2nop, and NSGA-II op12nop. The performance of the
original NSGA-II and the nine variants were evaluated based
on the three test instances.

The parameters for the proposed NSGA-II were set
through empirical testing. The population size Np was set to
50. The maximum number of generation MaxGen was set to
1000. Therefore, the maximum number of fitness evaluations
MaxFes was set to 5× 104. The crossover rate pc was set
to 0.7. The mutation rate pm was set to 0.5. The number of
independent trials for each algorithm for each instance was
set to 20.

D. Result Analysis

1) Comparison on IGD and HV: We first analyze the
results of the algorithms based on the performance metrics
IGD and HV. The performance of the NSGA-II variants
over 20 independent runs is shown in Figs. 1 and 2. Since
the results of the NSGA-II on instances Nos.1-3 are not
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Fig. 4. Population of NSGA-II and its variants at some generations on instances No.2.
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Fig. 5. Population of NSGA-II and its variants at some generations on instances No.3.

competitive (IGD over 1 × 105 and HV = 0), they are not
shown in the figures. The results of the NSGA-II with one
or more Pareto optimal (near Pareto optimal) solutions for
initialization are better than the original NSGA-II with ran-
dom initialization. Compared with NSGA-II variants with or
without additional near Pareto optimal solution nop (FCFS)

besides Pareto optimal solutions for initialization, solutions
from NSGA-II variants with nop are mostly better in terms
of IGD and HV. For example, in terms of IGD and HV,
NSGA-II op1nop, NSGA-II op2nop, and NSGA-II op12nop
are better than NSGA-II op1, NSGA-II op2, and NSGA-
II op12 on instances Nos.1 and 3, and the same on instances
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TABLE III
RESULTS OF THE COMPARISON ON THE COMPUTATION TIME AND OBTAINED PARETO OPTIMAL SOLUTIONS ON THREE TEST INSTANCES.

Instance NSGA-II NSGA-II op1 NSGA-II op2 NSGA-II op3 NSGA-II op12 NSGA-II op123 NSGA-II nop NSGA-II op1nop NSGA-II op2nop NSGA-II op12nop

1
Time (s) 9.42 10.33 11.59 9.82 13.57 15.18 8.35 10.40 11.62 13.58

# of Optimal Solutions 0 2 3 3 5 8 0 2 3 5
Time of solver (s) n.a. 5.50 9.55 13.05 15.05 28.10 n.a. 5.50 9.55 15.05

2
Time (s) 9.75 11.23 11.44 21.43 14.23 27.12 8.58 11.28 11.47 14.36

# of Optimal Solutions 0 1 1 2 2 4 0 1 1 2
Time of solver (s) n.a. 2.61 3.13 44.08 5.75 49.82 n.a. 2.61 3.13 5.75

3
Time (s) 9.78 16.10 20.51 31.95 27.91 51.25 8.66 16.12 20.58 27.99

# of Optimal Solutions 0 2 4 2 4 6 0 3 5 4
Time of solver (s) n.a. 22.98 45.61 72.04 45.61 117.66 n.a. 43.51 66.16 45.61

No.2, respectively.
2) Population Distribution: We plot the population of

the NSGA-II and its variants at different generations for
all 20 runs in Figs. 3 – 5. The figures show that the
solutions of NSGA-II are far from the Pareto front on all
instances. However, if Pareto optimal or near Pareto optimal
solutions are included, the obtained solutions are close to
the Pareto front and even similar to parts of the Pareto front.
For example, on instance No.1, five solutions are obtained
with the initial solution FCFS in NSGA-II nop, which are
close to the Pareto front and better than FCFS. With Pareto
optimal solutions for initialization, NSGA-II variants are
more likely to obtain high-quality solutions, which are parts
of the Pareto front. For example, on instance No.3, six
solutions are obtained with the initial solution op1, op2, and
op3. Therefore, three additional Pareto optimal solutions are
generated.

Meanwhile, as a multi-objective optimization problem,
both objectives must be optimized. The obtained solutions
are more likely to have a lower value of total arrival and
departure delay for all trains, which may be selected for
decision-making. A dispatching strategy with a smaller delay
is suitable for the actual application of HSR.

3) Analysis of Computation Time and Obtained Pareto
Optimal Solutions: The average computation time of NSGA-
II and its variants on 20 runs, the number (#) of obtained
Pareto optimal solutions for all 20 runs, and the time to
obtain the same amount of Pareto optimal solutions con-
sumed by the solver are shown in Table III. The computation
time of NSGA-II without Pareto optimal or near Pareto
optimal solutions for all three instances are within 10s.
Since no Pareto optimal solutions are obtained by NSGA-
II and NSGA-II nop, the number of obtained Pareto optimal
solutions are zero, and the corresponding time of solver are
not avaliable (n.a.).

As for NSGA-II variants with Pareto optimal solutions,
the average computation time is greater than that of NSGA-
II and NSGA-II nop because of the time for obtaining the
optimal solution by the solver. For instance No.1, the time
of the solver may be less than the time by NSGA-II op1,
NSGA-II op2, NSGA-II op1nop, and NSGA-II op2nop.

For instance No.2, additional optimal solutions are only
obtained in NSGA-II op3 and NSGA-II op123, where the
time of the solver is larger than that of the proposed
algorithms.

The NSGA-II variants (except for NSGA-II nop) perform
better on instance No.3, where the time of the solver is larger

than that of NSGA-II variants. Therefore, we demonstrate
that good solutions in the initial population can significantly
improve the performance of the NSGA-II, especially for
more complex scenarios.

V. CONCLUSION

The TTR problem with disturbance in sections and stations
for HSR is analyzed in this paper. A multi-objective opti-
mization problem is modeled, and a multi-permutation based
NSGA-II is proposed. An encoding and decoding method
is specially developed for the problem, which successfully
deals with the constraints. To improve the performance of
the algorithm, one or more Pareto optimal and near Pareto
optimal solutions are included into the initial population. By
including good initial solutions, Pareto optimal solutions can
be obtained, and the computation time is less than the solver
on several instances. In the future, we will develop more
efficient operators for NSGA-II and consider other EAs to
obtain more Pareto optimal solutions.
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