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In this study, the train platform rescheduling problem
(TPRP) at a high-speed railway station is analyzed.
The adjustments of the train track assignment and
train arrival/departure times under train arrival de-
lays are addressed in the TPRP. The problem is for-
mulated as a mixed-integer nonlinear programming
model that minimizes the weighted sum of total train
delays and rescheduling costs. An improved genetic
algorithm (GA) is proposed, and the individual is rep-
resented as a platform track assignment and train de-
parture priority, which is a mixed encoding scheme
with integers and permutations. The individual is de-
coded into a feasible schedule comprising the platform
track assignment and arrival/departure times of trains
using a rule-based method for conflict resolution in
the platform tracks and arrival/departure routes. The
proposed GA is compared with state-of-the-art evolu-
tionary algorithms. The experimental results confirm
the superiority of the GA, which uses the mixed en-
coding and rule-based decoding, in terms of constraint
handling and solution quality.

Keywords: high-speed railway, train platform reschedul-
ing, conflict resolution, genetic algorithm, mixed encod-
ing

1. Introduction

Arrival/departure routes and platform tracks in high-
speed railway passenger stations are important to station

transportation organizations as they directly affect the ef-
ficiency of station operations and the capacity of the sta-
tion. When inevitable emergencies occur during train
operations, such as infrastructure failure and undesirable
weather, train operations may be disrupted, which is typi-
cally accompanied by delays [1]. Consequently, the orig-
inal train platform schedule cannot satisfy the station op-
eration requirements. Therefore, a rapid and efficient ad-
justment of the train platform schedule, including the plat-
form track assignment and the arrival and departure times
of the affected trains, should be performed. The safety of
train operations should be ensured and regular operations
should be recovered the soonest possible.

The problem of adjusting the train platform schedule
is known in the literature as the train platform reschedul-
ing problem (TPRP) [2]. Various studies have been con-
ducted to solve the TPRP, which has been proven to be
non-deterministic polynomial hard (NP-hard) [2]. In most
studies, the problem is formulated as a mixed-integer
linear programming (MILP) model [3–6] and a mixed-
integer nonlinear programming (MINLP) model [7, 8].
Minimizing the total delay time of trains is typically set as
the optimization objective. Other objectives include min-
imizing the total platform track assignment costs [5] and
deviations from the original platform [2]. The CPLEX
solver is typically used to solve the TPRP. However, when
the scale of the problem increases, the computation time
of the CPLEX solver increases significantly.

Metaheuristics are typically used to solve NP-hard
problems [9]. Zhang et al. [5] proposed a genetic and
simulated annealing hybrid algorithm to solve the re-
optimization of train platforming cases involving train
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delays. Zhang et al. [7] proposed an improved discrete
teaching and learning optimization algorithm to solve the
above-mentioned problem. In most studies, only the train
platform track assignment was used as the encoding for
optimization. The arrival and departure times were ad-
justed through heuristics during conflict resolution and
were not directly controlled by the algorithm.

The contributions of this study are summarized as fol-
lows. First, a TPRP with train delays is proposed and
modeled as an MINLP problem. Second, an improved
genetic algorithm (GA) is proposed using a novel mixed
encoding method with integer and permutation encoding
schemes for solution representation and a rule-based de-
coding method to obtain a new train platform schedule.
The solution comprises two segments, one is the code of
the assigned track, and the second is the code of depar-
ture priority. The constraints are addressed using an en-
coding/decoding strategy, and the solution space is sig-
nificantly reduced. Crossover and mutation operators are
developed for the mixed encoding scheme. Finally, ex-
perimental results show the efficiency and effectiveness
of the proposed GA compared with state-of-the-art algo-
rithms.

The remainder of this paper is organized as follows.
The proposed model is presented in Section 2. Section 3
presents an improved GA for solving the TPRP. The per-
formance of the proposed algorithm is evaluated in Sec-
tion 4. Finally, the conclusions and future work are pre-
sented in Section 5.

2. Problem Formulation

This section introduces an MINLP model for formu-
lating the TPRP with train arrival delays. This model
minimizes the weighted sum of the total train delays and
rescheduling costs.

2.1. Assumptions
Seven assumptions are introduced as follows:

(1) Only the arrival and departure of trains at the stations
are considered. Trains passing through the station
without stopping are not considered.

(2) The settings of the train station, train platform plan,
and original train arrival and departure times are
known.

(3) The number of platform tracks and routes satisfies
the requirements for train arrivals and departures
during regular operations.

(4) The upstream and downstream trains are operated
separately on the sides of the platform tracks and on
arrival and departure routes. Rescheduling is consid-
ered only on one side.

(5) Disruption at the station is not considered; for exam-
ple, track blockage is not considered.

Table 1. Summary of notations.

Symbol Description
Indices

i index of platform track, i ∈ I
l,k index of train, l,k ∈ L

Parameters
I set of platform tracks
L set of trains
T a

l arrival time of train l in the original schedule
T d

l departure time of train l in the original schedule
TS safety interval time between two consecutive arrival

trains that occupy the same platform track
ha minimal headway between two consecutive arrival

trains
hd minimal headway between two consecutive departure

trains
w weight value for rescheduling cost
Xl,i platform track assignment of train l in the original

schedule, which is 1 if train l occupies platform track i
and 0 otherwise

dl arrival delay for train l
τa

l estimated arrival time of train l
qa

l,k actual order for train arrival, which is 1 if train l arrives
before train k and 0 otherwise

M a large positive number
Decision variables

xl,i actual platform track assignment of train l, which is 1
if train l occupies platform track i and 0 otherwise

ta
l actual arrival time of train l

td
l actual departure time of train l
qd

l,k actual order for train departure, which is 1 if train l
departs before train k and 0 otherwise

(6) Some trains are in sections with known delay times.

(7) The trains arrive from one direction, which implies
that the occupation order of the routes and platform
tracks (train arrival order) is determined based on the
estimated arrival time.

2.2. Parameters and Decision Variables
The notations used for the proposed model are shown

in Table 1.

2.3. Objective Function
The objective function in this model is the weighted

sum of the two components. The first component, Z1,
is the sum of the total train arrival and departure delays.
The second component, Z2, is the rescheduling cost of
the train platform schedule, which includes the total num-
ber of train arrival/departure time adjustments and train
platform track adjustments. Here, sgn(·) returns 1 when
the rescheduled arrival/departure time is later than the
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original arrival/departure time and returns 0 when the ar-
rival/departure time remains the same. ∑i∈I 0.5|Xl,i − xl,i|
equals 1 when the train platform track is adjusted and 0
otherwise.

Z1 = ∑
l∈L

(ta
l −T a

l )+∑
l∈L

(
td
l −T d

l

)
, . . . . . (1)

Z2 = ∑
l∈L

sgn(ta
l −T a

l )+∑
l∈L

sgn
(

td
l −T d

l

)

+∑
l∈L

∑
i∈I

0.5|Xl,i − xl,i|. . . . . . . . . (2)

2.4. Constraints
The constraints for train operations at the station are

described as follows:

∑
i∈I

xl,i = 1, ∀l ∈ L, . . . . . . . . . . . (3)

ta
k − td

l ≥ TSqa
l,k −M(3− xl,i− xk,i −qa

l,k),

∀l,k ∈ L, l �= k, i ∈ I, . . . . . . . . . . (4)
ta
k − ta

l ≥ haqa
l,k −M(1−qa

l,k), ∀l,k ∈ L, l �= k, (5)

td
k − td

l ≥ hdqd
l,k −M

(
1−qd

l,k

)
, ∀l,k ∈ L, l �= k, (6)

qd
l,k +qd

k,l = 1, ∀l,k ∈ L, l �= k, . . . . . . . (7)

td
l − ta

l ≥ T d
l −T a

l , ∀l ∈ L, . . . . . . . . (8)
τa

l = T a
l +dl, ∀l ∈ L, . . . . . . . . . . (9)

ta
l ≥ τa

l , ∀l ∈ L, . . . . . . . . . . . (10)

td
l ≥ T d

l , ∀l ∈ L, . . . . . . . . . . . (11)

ta
l , t

d
l ≥ 0, ∀l ∈ L, . . . . . . . . . . . (12)

xl,i ∈ {0,1}, ∀l ∈ L, i ∈ I, . . . . . . . (13)

qd
l,k ∈ {0,1}, ∀l,k ∈ L, l �= k, . . . . . . (14)

where Eq. (3) ensures that only one platform track is as-
signed to train l. Eq. (4) guarantees a safe interval time
between two consecutive trains that occupy the same plat-
form track. Eqs. (5) and (6) guarantee that the arrival and
departure headways for any two trains satisfy the station
requirements, which avoids conflicts in the arrival and de-
parture routes. Eq. (7) represents the departure order con-
straint of the two trains at station. Eq. (8) ensures that
the dwell time at the train station is greater than or equal
to the original dwell time. Eq. (9) represents the esti-
mated arrival times. Eqs. (10) and (11) ensure that the
actual arrival and departure times are not less than the es-
timated arrival and original departure times, respectively.
Eqs. (12)–(14) restrict the decision variables to real and
binary numbers.

2.5. Proposed Model
The TPRP model was formulated to minimize the

weighted sum of the total train arrival/departure delays
and the rescheduling costs of the train platform schedule
under several constraints.

min Z = Z1 +wZ2 s.t. Constraints (3)–(14), . (15)

where w is the weight to control the rescheduling costs.

2.6. Model Reformulation
Owing to the nonlinear terms (sgn(·) and | · |) in Eq. (2),

a linearization method is developed. Three auxiliary vari-
ables are introduced, i.e., r1 = [rl

1]|L|×1, r2 = [rl
2]|L|×1, and

r3 = [rli
3 ]|L|×|I|, which are defined as follows:

⎧⎪⎨
⎪⎩

rl
1 = sgn(ta

l −T a
l )

rl
2 = sgn

(
td
l −T d

l

)
rli

3 = |Xl,i − xl,i|
, . . . . . . . . . (16)

Substituting Eq. (16) into Eq. (2) yields a reformulated
MILP model. Thus, Eq. (2) is reformulated as follows:

Z3 = ∑
l∈L

rl
1 +∑

l∈L
rl

2 +∑
l∈L

∑
i∈I

0.5rli
3 . . . . . . (17)

Meanwhile, the TPRP model can be reformulated as fol-
lows:

min Z = Z1 +wZ3 . . . . . . . . . (18)
s.t. Mrl

1 ≥ ta
l −T a

l , ∀l ∈ L, . . . . . . (19)

Mrl
2 ≥ td

l −T d
l , ∀l ∈ L, . . . . . . (20)

rl
1 ≤ ta

l −T a
l , ∀l ∈ L, . . . . . . . (21)

rl
2 ≤ td

l −T d
l , ∀l ∈ L, . . . . . . . (22)

rli
3 ≥ Xl,i − xl,i, ∀l ∈ L, i ∈ I, . . . . . (23)

rli
3 ≥ xl,i −Xl,i, ∀l ∈ L, i ∈ I, . . . . . (24)

rl
1,r

l
2 ∈ {0,1}, ∀l ∈ L, . . . . . . . (25)

rli
3 ∈ {0,1}, ∀l ∈ L, i ∈ I, . . . . . . (26)

Constraints (3)–(14), . . . . . . . . (27)

where Eqs. (19)–(26) ensure that the reformulated model
is equivalent to the original model. The reformulated
model is an MILP model belonging to the class of NP-
hard problems.

3. Proposed Method

In this section, we propose an improved GA to solve
the TPRP. First, encoding and decoding are introduced
to transform the original MILP problem into an integer-
and permutation-based combinatorial optimization prob-
lem without constraints. The population of the GA is up-
dated using crossover and mutation operators. The GA
process is presented in Algorithm 1.

3.1. Encoding and Decoding
To solve the TPRP, most studies used the integer-value-

encoding scheme to represent the platform track assign-
ment. When delays occur, the affected trains are likely
to change their platform track, which may cause con-
flict with other trains. We propose a novel encoding
scheme for the TPRP, which is a mixed encoding scheme
with integer values and permutation-value encodings. The
integer-value encoding is similar to that of previous stud-
ies, which indicates the platform track assignment. The
value range is [1, |I|]. The length of the first segment
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Algorithm 1 The improved genetic algorithm for TPRP.
Input: Population size Np.
Output: Final population P.

1: Generate the initial population P with Np individuals
randomly

2: while terminate condition is not satisfied do
3: Select parent individuals through roulette wheel

selection.
4: Update P through single-point crossover and

modified order crossover.
5: Update P through single-point mutation and swap

mutation.
6: Merge the new populations with the original ones

and obtain the best individuals based on the popula-
tion size.

7: end while
8: return

of an individual is equal to the number of trains |L|.
Permutation-value encoding is performed to determine
the priority of the trains. When a conflict occurs in de-
termining the departure time of trains, the departure time
of the train with lower priority is adjusted for conflict res-
olution. The value range is [1, |L|]. The length of the sec-
ond segment of an individual is equal to the number of
trains |L|.

The key issue in decoding is the method to minimize
the change in the train arrival/departure time to avoid de-
lays and minimize the increase in the number of additional
adjustments. For an individual with a platform track as-
signment and train departure priority, three types of con-
flicts exist between trains at the station, as shown in Fig. 1.

1) Conflicts when trains occupy the same platform
track: This refers to Eq. (4). The actual order of
train arrivals is determined by the estimated arrival
time. The arrival and departure times of the subse-
quent train are adjusted based on the safety interval
time constraint in Eq. (4) (see Fig. 1(a)).

2) Conflicts in the arrival routes: This refers to
Eq. (5). Similar to the former conflict, because the
order of the arriving trains is determined, the arrival
and departure times of subsequent trains are adjusted
based on the arrival headway constraint in Eq. (5)
(see Fig. 1(b)).

3) Conflicts in the departure routes: This refers to
Eq. (6). The actual order of departure of the affected
trains is based on the train departure priority. The
departure times of the affected trains with a lower
priority are adjusted based on the departure headway
constraint in Eq. (6) (see Fig. 1(c)).

Based on the rules above for conflict resolution, the
constraints in the TPRP model can be addressed effec-
tively and the model can be converted into an uncon-
strained one. The feasibility of the solution under mixed
coding is guaranteed, and the efficiency in solving the

original constrained optimization problem is significantly
improved.

3.2. Population Initialization
The initial population was randomly generated. The

platform track assignment was an integer randomly gen-
erated within the range [1, |I|]. The train departure pri-
ority was a randomly generated permutation within the
range [1, |L|].

3.3. Selection Operator
The operator used for selection was a roulette wheel,

which is typically used in GA. Individuals were selected
based on their fitness values. Because we were address-
ing a minimization problem, the probabilities of the indi-
viduals were set based on the exponential of the negative
fitness values.

3.4. Crossover Operator
Based on the encoding characteristics, two crossover

operators were adopted based on the crossover
rate pc [10].

1) Single-point crossover was adopted for integer-value
encoding. This operator selects two parents and ran-
domly selects a point for crossover. Two offspring
are obtained by combining the parents at a crossover
point.

2) A modified-order crossover (MOC) was adopted for
permutation-value encoding. The MOC operator
randomly selects a crossover point to divide both
parent individuals p1 and p2 to obtain left and right
strings of the same length. The order of the right
string p1 is used to change the order of the positions
in p2 and vice versa.

3.5. Mutation Operator
Based on the encoding characteristics, two mutation

operators were adopted based on the mutation rate pm.

1) Single-point mutation was adopted for integer-value
encoding. The position of an individual was ran-
domly selected and replaced to obtain a new integer.

2) Swap mutation was adopted for permutation-value
encoding. Two positions for each individual were
randomly selected and swapped to obtain a new per-
mutation.

3.6. Computational Complexity
The proposed GA includes encoding and decoding,

population initialization, as well as selection, crossover,
and mutation operators. Let Np be the population size
and |L| be the number of trains. The computational
complexity of the fitness evaluation is O(|L|2), the com-
putational complexity of the population initialization is

962 Journal of Advanced Computational Intelligence Vol.27 No.5, 2023
and Intelligent Informatics



Improved GA for Train Platform Rescheduling

(a) Conflicts when trains occupy the same
platform track

(b) Conflicts in the arrival routes (c) Conflicts in the departure routes

Fig. 1. Conflicts between trains at the station.

Table 2. Parameters settings for test instances.

Parameters Values Parameters Values
|I| 5, 6 hd 4 min
|L| 45, 50, 55, 60, 70, 79 w 1, 10
TS 3 min M 2,000
ha 4 min

O(Np ∗ |L|), the computational complexity of the selec-
tion operator is O(Np), the computational complexity of
the crossover operator is O(Np∗|L|), and the mutation op-
erator is O(Np ∗ |L|). Therefore, the total computational
complexity of the proposed GA is O(Np ∗ |L|3).

4. Computational Experiments

This section discusses the performance of the proposed
GA. First, test instances were generated. Subsequently,
the problem was solved using the proposed GA and other
algorithms for comparison, including exact solutions us-
ing CPLEX. All the experiments were conducted on a
personal computer with an Intel Core i7-9700T CPU
@2.00 GHz and 16 GB of internal memory. Exact so-
lutions for the TPRPs were implemented in MATLAB
R2020b using YALMIP as the modeling language and
CPLEX 12.10, with default parameter settings [11]. Other
algorithms used for solving TPRPs were implemented us-
ing MATLAB R2020b.

4.1. Test Instances
We first developed test instances owing to the non-

existence of benchmark instances with train arrival de-
lays for the TPRP in the literature. The trains propagated
downstream at a high-speed railway station from 12:00
to 22:00. The arrival delay of train l (dl) was an integer
randomly generated within [1,10] min. The remaining pa-
rameters are listed in Table 2. Twelve test instances were
generated based on the combination of |L| and w.

4.2. Algorithms for Comparison
To evaluate the performance of the proposed GA, we

used the following three algorithms: the self-adaptive dif-
ferential evolution (SaDE) algorithm [12], comprehen-
sive learning particle swarm optimizer (CLPSO) [13], and

GA. The crossover and mutation operators were not the
same as those in the proposed GA. They were real-coded
GAs with arithmetic crossovers [14] and Gaussian muta-
tions [15]. All three algorithms performed search in a con-
tinuous space. The integer value for the platform track as-
signment was obtained via rounding, and the permutation
value for the train departure priority was obtained using a
random key algorithm [1].

4.3. Parameter Settings
The parameters for the proposed GA were set through

empirical testing. The population size Np was set to 1,000.
The crossover rate pc was set to 0.8 for w = 1 and 0.9 for
w = 10. The selection probability of the crossover op-
erator was set to 0.95 for the single-point crossover and
0.05 for the MOC operator. The mutation rate pm was
set to 0.5. The selection probability of the mutation op-
erator is set to 0.95 for the single-point mutation oper-
ator and 0.05 for the swap mutation operator. For the
real-coded GA, the population size Np was set to 200.
The crossover rate pc and mutation rate pm were set to
0.9 and 0.05, respectively. For the SaDE, a population
size Np = 50 was set, as in the original study [12]. For
the CLPSO, a population size Np = 40 and the acceler-
ation constant c = 1.49445 were set, as in the original
study [13]. The number of independent trials for each
algorithm for each instance was set to 20. The maximum
number of fitness evaluations for all algorithms was set to
2×105.

4.4. Results and Analysis
We compared the performance of the proposed GA

with those of the three algorithms and CPLEX. Table 3
lists the results of 20 independent trials for each algo-
rithm, with the mean values and standard deviations.
CPLEX was executed only once. The best metaheuris-
tic results are indicated in bold. As shown in Table 3, the
proposed GA outperformed the other three metaheuristics
in most instances. The best values yielded by the pro-
posed GA for all instances were the same as the optimal
values yielded by CPLEX. For the other three metaheuris-
tics, the CLPSO outperformed the proposed GA on in-
stances 8, 10, and 11. The performances of the SaDE
and real-coded GA were worse than those of the proposed
GA and CLPSO because the SaDE and real-coded GA
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Table 3. Comparison results of objective value of different algorithms.

Instance |I|/|L|/w SaDE CLPSO Real-coded GA The proposed GA CPLEX
1 5/45/1 673.25±1.83 670.00±2.51 700.45±8.34 663.95±±±2.16 661.00
2 5/50/1 767.65±2.89 759.20±2.65 796.40±15.44 753.60±±±1.64 752.00
3 5/55/1 796.10±2.02 785.60±2.74 826.00±11.88 779.95±±±2.95 777.00
4 6/60/1 863.65±1.90 847.55±2.39 888.95±13.77 843.30±±±1.49 842.00
5 6/70/1 1170.40±3.75 1144.25±3.89 1213.15±12.60 1137.85±±±3.44 1135.00
6 6/79/1 1356.75±3.09 1324.25±4.93 1391.00±16.40 1311.65±±±2.58 1308.00
7 5/45/10 1538.15±16.06 1508.90±15.91 1611.80±28.62 1507.10±±±8.49 1501.00
8 5/50/10 1693.45±24.19 1671.10±±±0.31 1801.15±46.16 1672.60±4.44 1671.00
9 5/55/10 1826.40±33.44 1773.50±2.24 1946.55±27.96 1773.00±±±0.00 1773.00
10 6/60/10 2069.00±26.63 1958.60±±±2.23 2172.10±36.52 1962.65±6.71 1958.00
11 6/70/10 2610.20±29.67 2414.75±±±7.37 2738.05±43.55 2416.35±5.51 2413.00
12 6/79/10 3087.50±24.84 2740.85±5.47 3147.80±49.53 2739.60±±±6.28 2738.00

Fig. 2. Original train platform schedule for instance No.6.

Fig. 3. Rescheduled train platform schedule for instance No.6.

were not designed for mixed encoding with integer and
permutation values. All the results of the metaheuristics
were obtained within 1 min, which guarantees real-time
rescheduling.

Figures 2 and 3 show the original and rescheduled train
platform schedules for instance No.6, which were ob-
tained using the proposed GA with an objective value of
1308. In these figures, the rectangle in Fig. 2 and that in
Fig. 3 represent the occupations of different trains on the
platform tracks and arrival/departure routes, respectively.
The horizontal length of the rectangle represents the oc-
cupation time of the tracks and routes. The number of
trains is indicated above the rectangle. The horizontal and
vertical axes represent the time and name of the occupied
track, respectively. The rectangle in Fig. 2 represents the
non-adjusted platform schedule of the train, whereas the
rectangle in Fig. 3 represents the adjusted platform track
or arrival/departure time.

For instance, for No.6, the rescheduling cost was 160

(including 79 adjustments in arrival time, 79 adjustments
in departure time, and two adjustments in the platform
track), and the total train delay was 1148 min. Based on
Figs. 2 and 3, the unoccupied resources in the platform
track were used more effectively. For example, the tracks
were less unoccupied from 12:00 to 15:00 on track 7G
(see Fig. 2). In the rescheduled train platform schedule,
these tracks were used more effectively by assigning train
Nos.8 and 18.

Figure 4 shows the convergence curves of the differ-
ent algorithms for all test instances. The horizontal and
vertical axes represent the number of fitness evaluations
and the mean of the objective function for 20 trials, re-
spectively. As shown, the proposed GA converged faster
than the other algorithms initially. In addition, both the
proposed GA and CLPSO exhibited high convergence
speeds. The CLPSO demonstrated good searching abil-
ity and performed better than the proposed GA on in-
stances 8, 10, and 11. The final result yielded by the pro-
posed GA was better than those of the other algorithms
for most test instances.

5. Conclusion

In this study, train platform rescheduling at a high-
speed railway station under train delays was formulated
as an MINLP problem and linearized to an MILP model.
A mixed-encoding GA was designed to solve the TPRP.
A novel encoding and decoding method was designed by
transferring the original problem to an unconstrained one,
thus avoiding numerous ineffective searches in the solu-
tion space. Tests performed based on 12 test instances
showed that the proposed GA outperformed the other al-
gorithms in most instances and was more effective than
CPLEX. The results were obtained within 1 min, which
demonstrated the feasibility of the proposed GA for real-
time rescheduling.

In future, we will consider more complex railway sta-
tions with more arrival and departure directions. Consid-
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Fig. 4. Convergence curves of different algorithms.

ering the uncertainties in a dynamic environment renders
the model more practical [16]. In addition, the crossover
and mutation operators of the proposed GA can be further
improved. Finally, the rescheduling of the train timetable
and train platform can be further analyzed using an inte-
grated model [17].
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