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Abstract

This paper investigates the stochastic area coverage problem of sensors with uncertain detection probability. The risk

associated with uncertain parameters is managed using the conditional value-at-risk (CVaR) risk measure. The loss

function is represented by the uncovered area coverage rate. We then formulate the minimum CVaR-based uncovered

area coverage (CVaR-UAC) problem and provide some theoretical guarantees for the problem. Unlike previous re-

search that treats area coverage as a single problem, we propose an efficient particle swarm optimization (PSO) with

evolutionary multitasking to solve the stochastic area coverage problem along with with multiple simplified problem

forms. These simplified problems act as the auxiliary tasks for the original CVaR-UAC to enhance the evolutionary

search. We have improved the proposed PSO algorithm from the framework of disturbance PSO and virtual force

directed co-evolutionary particle swarm optimization, using a hybrid method in population initialization and an adap-

tive perturbation in individual updating. As a result, the exploration ability of the algorithm is significantly enhanced.

The experiment results have demonstrated the effectiveness of the proposed algorithm compared with state-of-the-art

algorithms in terms of solution quality.

Keywords: Wireless sensor networks, Stochastic area coverage, Conditional value-at-risk, Co-evolutionary particle

swarm optimization, Adaptive perturbation, Evolutionary multitasking

1. Introduction

Wireless sensor networks (WSNs) consist of small, inexpensive, low-powered homogeneous or heterogeneous

sensors. In recent years, WSNs have gained significant attention as a research field for various applications, including

fire monitoring, battlefield surveillance, target tracking, intrusion detection, and transportation [5, 13]. The primary

goal of WSNs is to sense the environment and enable communication among sensors.5

The sensor deployment problem is a classical optimization problem that falls under the category of resource

allocation problem. Its main objective is to determine the optimal location for sensor nodes. This problem is related to

the facility location problem, which focuses on locating the facilities to provide better services to customers (demand
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points) with better coverage or fewer facilities. Sensors are considered facilities, while targets are demand points. The

covering problem is a popular facility location model [12]. The distance between customers and facilities determines10

the services customers receive from facilities.

Coverage problems can be classified into three models: point/target coverage, area coverage, and barrier coverage

[5]. Point coverage deals with a set of target points, where each point should be observed by sensors. In area

coverage, the entire area is considered. Barrier coverage deals with intruders who attempt to penetrate an area. This

paper focuses on the area coverage problem, with the main objective of determining the optimal location of the sensor15

network to monitor an area.

The sensor detection model describes the sensing ability and quality of the geometric relation between a target

point and a sensor node. In WSNs, there are two sensor detection models: the binary detection model and the

probabilistic detection model [49]. In the binary detection model, a target is deterministically detected when it is

within the sensing range. However, the detection probability of the sensor may be uncertain due to some noise and20

obstacles. In the probabilistic sensor detection model, the detection probability decays with distance from the sensor.

In our work, we use the probabilistic sensor detection model.

The deployment space of a sensor deployment problem can be classified into two types: continuous space-based

deployment and discrete space-based (or grid-based) deployment [8]. In continuous space-based deployment, nodes

can be placed anywhere within the deploy region. In discrete space-based deployment, nodes can only be placed in25

the grid network or predefined candidate positions. This paper investigates continuous space-based deployment.

Regardless of the type of sensor deployment, the coverage problem in WSNs is nondeterministic polynomial

complete (NP-complete) [13]. Metaheuristics are commonly used to solve this problem [8]. Among these algorithms,

particle swarm optimization (PSO) is most frequently used [20, 21]. Parallel particle swarm optimization produces

the same results with multiple processors, reducing the computation time [3]. In [42], a parallel particle swarm30

optimization divides the sensing area and the sensors equally into several parts to deal withhomogeneous sensors to

be deployed [42]. The partitioned search space decreases the complexity of the problem. Ding et al. [7] proposed a

disturbance PSO (d-PSO) with a Gaussian perturbation to update the velocity, which shows fast convergence. Ning

et al. [30] described a discrete and multi-swarm PSO to solve the dynamic deployment of WSN, maximizing the

coverage while minimizing the moving distance. Tang et al. [39] established a three-dimensional heterogeneous35

sensor network model and provided an improved PSO algorithm. Wang et al. [44] proposed a resampled PSO

(RPSO) to maximize the coverage and energy efficiency of the WSN.

Some approaches combine other methods with metaheuristics to find good solutions. In [1], the Voronoi diagram

was combined with PSO to obtain the best coverage. This algorithm used PSO to find optimal positions, while the

Voronoi diagram evaluated the solution’s fitness value. Some studies used virtual force between sensors, environment,40

and obstacles to improve the sensor coverage rate [43]. This algorithm was called Virtual Force Algorithm (VFA).

Liang et al. [26] used a virtual force based coverage algorithm to achieve area coverage. Directional sensors were

subjected to four forces caused by neighbor sensors and uncovered regions. Wang et al. [43] presented an improved

co-evolutionary PSO algorithm (VFCPSO) that combines virtual force and PSO with a co-evolutionary mechanism

to solve the dynamic sensor deployment problem. Yoon and Kim [46] proposed an efficient genetic algorithm (GA)45

to maximize the coverage deployment of heterogeneous sensors. A normalization method was proposed by analyzing

that the phenotype space of the problem is a quotient space of the genotype space. Besides, a local search for GA

is applied by VFA. Yoon and Kim [47] recently improved their former studies [46] by providing a new coverage

estimation method and an iterative local search to develop a memetic algorithm (MA). Hanh et al. [18] proposed an

improved GA with heuristic population initialization and exact integral area calculation for fitness function. Nguyen50

et al. [29] proposed a novel coverage strategy for WSN by Ions Motion Optimization (IMO) algorithm.

Most studies reviewed above consider deterministic sensor deployment problems with parameters having exact

values. However, many parameters are uncertain in the real environment, such as the sensor’s detection probability

and target locations [8, 11]. Erişkin [11] proposed a target coverage problem with uncertainties in the target locations.

GA was developed to provide a robust solution to the problem. This paper considers uncertainties in the sensor’s55

detection probability, where the sensor type considered is probabilistic rather than binary. The scenario approach

can tackle the uncertainty of sensor detection. Furthermore, based on current research, when the number of sensors

increases to a large scale, most metaheuristics quickly converge to a local minimum, making it challenging to obtain

optimal global solutions. Table 1 summarizes the reviewed literature on the sensor deployment problem.

Evolutionary multitasking (EMT) has recently provided a new paradigm for evolutionary computation, which60
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Table 1: Summary of the literature on sensor deployment problem.

Ref. Cov. Type Sensor Type Detection Model Deployment Space Optimization Objective Solution Method

[7] Area Homogenous Probabilistic Continuous Coverage d-PSO

[42] Area Heterogeneous Binary Continuous Coverage Parallel PSO

[30] Area Heterogeneous Probabilistic Continuous Coverage and energy

consumed

Multi-swarm PSO

[39] Area &

Target

Heterogeneous Probabilistic Continuous Coverage and target de-

tection probability

Improved PSO

[44] Area Heterogeneous Binary Continuous Coverage RPSO

[26] Area Homogenous Binary Continuous Coverage and energy

consumed

VFA

[43] Area Heterogeneous Probabilistic Continuous Coverage VFCPSO

[46] Area Heterogeneous Binary Continuous Coverage GA

[47] Area Heterogeneous Binary Continuous Coverage MA

[18] Area Heterogeneous Binary Continuous Coverage GA

[38] Target Heterogeneous Probabilistic Discrete Coverage LINGO

[49] Area Homogenous Probabilistic Continuous Coverage VFA

[24] Area &

Target

Homogenous Probabilistic Continuous Coverage VFA

[29] Area Homogenous Probabilistic Continuous Coverage IMO

[34] Area Heterogeneous Binary Continuous Coverage and connectiv-

ity

GA with steepest de-

scend

[4] Area Homogenous Binary Continuous Coverage Levy Flight mecha-

nism with WOA

[2] Area Homogenous Binary Continuous Coverage GSO with Voronoi

and K-means

[11]† Target Heterogeneous Probabilistic Discrete Coverage GA

This paper† Area Heterogeneous Probabilistic Continuous Coverage Improved PSO with

EMT

WOA: whale optimization algorithm; GSO: glowworm swarm optimization.
† References with uncertainty characteristics. [11]: probabilistic target locations. This paper: coverage under uncertainty.

deals with multiple optimization problems simultaneously [16, 25]. The knowledge obtained in different tasks is

transferred by EMT during the evolution process. As a result, the searching ability and convergence performance of

the algorithm on each task are greatly enhanced [31]. EMT has been successfully applied in various multitasking

optimization problems, such as unmanned systems planning [17], WSN lifetime maximization [37], multiple robot

navigation [23], etc. Besides, EMT shows promising prospects in solving the large-scale optimization problem by65

constructing simplified versions of the original problem as the auxiliary or helper tasks [14]. By generating a multi-

tasking environment, the knowledge from different auxiliary tasks enhances the global search in the main task [31, 33].

Therefore, for the sensor deployment problem, different simplified deployment problems can be generated as auxiliary

tasks, and multitasking search on these tasks can help enhance the search on the sensor deployment problem. To the

best of our knowledge, the sensor deployment problem has not been solved through EMT.70

In this paper, we address the problem of determining the deployment scheme of a set of heterogeneous sensors

given a target area to cover. Since the sensor’s detection probability is uncertain, we use the conditional value-at-

risk (CVaR) measure to control the uncovered area coverage rate of different scenarios [32]. CVaR is a percentile

risk measure that takes the average of the loss over part of the worst-case values. This risk measure avoids the

over-conservativeness of the solution. It has been applied to several sensor networks-related works [35], e.g., sensor75

scheduling and communication network interdiction. However, this risk measure has not previously been used in

sensor coverage problems to the best of our knowledge. Therefore, we formulate this sensor deployment problem

as the minimum CVaR-based uncovered area coverage (CVaR-UAC) problem. We summarize our contributions as

follows:

• We present a mathematical model for the minimum CVaR-UAC problem to deal with the area coverage for80

heterogeneous sensor deployment with uncertainty in sensor detection. Different scenarios are generated by the
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uncertainty of the sensors’ parameters with probabilistic sensors.

• We provide an approximation ratio on the discrete version of CVaR-UAC by the proposed PSO. The submodu-

larity and monotonicity of the coverage function help to obtain the results.

• The CVaR-UAC is solved by an efficient PSO search based on the evolutionary multitasking technique. Multiple85

simplified CVaR-UACS are generated by sensor grouping and area partitioning. The efficient PSO search is

conducted simultaneously on the original CVaR-UAC and the generated multiple simplified ones. This approach

significantly improves the deployment performance with the help of searching in simplified problems.

• We propose an efficient PSO algorithm for CVaR-UAC with the following two improvements:

– We propose a hybrid initialization strategy incorporating the VFA with the random initialization strategy.90

Numerical results show that the proposed algorithm with hybrid initialized populations can find better

solutions than randomly initialized ones. It provides better initial solutions, making it easier to achieve

global convergence.

– We add adaptive perturbation to the d-PSO and VFCPSO framework, thus creating the proposed algorithm,

ad-VFCPSO. The exploration of the proposed algorithm is highly improved, and the experiments show95

that ad-VFCPSO outperforms some state-of-the-art algorithms with respect to the optimization goal.

The rest of this paper is organized as follows. Section 2 describes the minimum CVaR-UAC problem. Section

3 presents our algorithm based on EMT and adaptive perturbation with the VFCPSO framework. Experimentation

design with algorithms and experiment settings are given in Section 4. The performance of the proposed algorithm is

evaluated in Section 5. Finally, conclusions and future work are given in Section 6.100

2. Preliminaries and problem formulation

This paper analyzes the area coverage problem based on probabilistic sensors under uncertainty controlled by

CVaR, which involves deploying sensors with risk preference for area coverage. Firstly, we describe the detection

model and area deployment scenarios based on the probabilistic sensors. Then, we define the minimum CVaR-

UAC problem based on the probabilistic detection model. Risk management techniques are adopted to deal with the105

stochastic scenarios of area coverage. We aim to minimize the CVaR of the uncovered area coverage rate with the

given probabilistic sensors.

2.1. Detection model

As mentioned before, we use a probabilistic sensor detection model. The probability of a grid point (x, y) being

covered by a sensor node si can be computed as [24].

cxy(si) =



























0 if r + re ≤ d(si, P)

e(−α1λ
β1
1
/λ
β2
2
+α2) if r − re < d(si, P) < r + re

1 if d(si, P) ≤ r − re

(1)

where d(si, P) denotes the Euclidean distance between sensor node si and point P, the constant r is the sensing range,

re(re < r) measure the uncertainty of the detection. λ1 and λ2 are the input parameters, which measure the difference of110

distance d(si, P) with the boundary of the judging condition of Eq. (1) [29]. They are calculated by λ1 = re−r+d(si, P)

and λ2 = re + r − d(si, P). α1, α2, β1 and β2 are detection probabilities parameters. These values vary depending on

the sensor’s types and characteristics.
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2.2. Problem statement

There are N sensors deployed in an 2D plane of size L × L. The target area is divided into L
grid
× L

grid
grids, where

each grid has an area of grid2. Each grid can be monitored by multiple sensors nearby in a collaborative manner. Let

S denote the set of sensor nodes, sensor node si be the sensor located at point (xi, yi), and point P represent any grid

point (x, y). Each grid point covered by a sensor will have a coverage rate, and the grid covered by multiple sensors

may have a better coverage rate. The probability that P(x, y) is covered by a set of sensors S is defined as:

cxy(S ) = 1 −

N
∏

i=1

(1 − cxy(si)) (2)

This paper employs CVaR to deal with uncertainty in the area coverage problem. The loss function used is the115

uncovered rate of the sensors. Therefore, we define the minimum CVaR-UAC problem: given a set of sensors S and

a target area with L × L grids, the objective is to minimize the CVaR of the uncovered rate in the area. Our aim is to

determine the position of different sensors in the area. The uncertainty of the detection re is considered an uncertain

value with a known distribution, and a scenario-based approach is adopted to deal with uncertainty.

In the next step, we define the uncovered area coverage rate and CVaR of the uncovered area coverage rate, which120

are used as metrics for the performance evaluation of the WSN deployment.

Definition 1. (Uncovered area coverage rate). The uncovered area coverage rate (UACR) of a sensor node set S is

defined as:

UACR(S ) = 1 −
Area(S )

L ∗ L
= 1 −

∑L
x=0

∑L
y=0 cxy(S )

L ∗ L
(3)

where Area(S ) is the coverage area of the sensor node set S , L ∗ L is the total area of the target region. A suitable

sensor deployment scheme should have a lower UACR. Thus, the larger Area(S ) is, the better quality of the sensor

deployment. Therefore, UACR can be used as a loss function when risk measure is considered.

CVaR [32] is a risk measure closely related to a well-known quantitative risk measure referred to as Value-at-Risk125

(VaR). For a given loss distribution, β-VaR denotes the smallest value α such that the loss does not exceed α with

probability 1 − β, while β-CVaR represents the expected loss conditional on the loss exceeding β-VaR.

To better describe the relationship between β-VaR and β-CVaR, their representations are shown in Fig. 1. The

figure displays the frequency of a loss distribution with a long tail, showing the mean value, VaR, CVaR, and maximum

loss are shown in the figure, with β = 0.95. Since β-CVaR is the expected loss conditional on the loss exceeding β-130

VaR, it represents the average loss value between VaR and maximum loss. Using only VaR may ignore those bad

scenarios near the maximum loss.

Remark 1. When β = 1, the decision maker is the most risk-averse. We can see in Fig. 1 that both VaR and CVaR

will equal the maximum loss. When β = 0, the decision maker is risk-neutral. VaR will equal the minimum loss and

CVaR will equal the mean value.135

Therefore, CVaR is a more conservative risk measure than VaR. With the loss function UACR, we have the

following definition:

Definition 2. (Conditional value-at-risk of uncovered area coverage rate). The CVaR of the UACR is an effective

metric for evaluating deployment performance when considering uncertainty and risk. A finite set of scenarios ξ ∈ Ξ

with a total number W is used to formulate different realizations of the sensor network parameters. The CVaR of the

UACR of a sensor node set S is defined as:

CVaRβ(UACR(S , ξ)) =

min
α∈R















α +
1

1 − β

W
∑

w=1

pw

[

UACR(S , ξw) − α
]+















(4)

where ξw denotes the uncertain parameters of the WSNs in the wth scenario, pw is the probability of scenario ξw, and

[t]+ = max{t, 0}. β is the probability level that controls the risk preference or the level of conservatism. When β equals

1, Eq. (4) corresponds to minimizing the maximum of the UACR, while β equals 0, Eq. (4) corresponds to minimizing140

the average value of the UACR. Similarly, A good sensor deployment scheme should have a lower CVaR of UACR.
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Fig. 1: The frequency of a loss distribution to show mean value, VaR, CVaR, and maximum loss, β = 0.95.

Therefore, we proposed the minimum CVaR-UAC problem:

min CVaRβ(UACR(S , ξ)) (5)

We consider the value pw can all be set to 1/W, so each scenario has the same probability. This problem can be

easily transformed for easy implementation by introducing extra variables uw and constraints.

min
α















α +
1

W(1 − β)

W
∑

w=1

uw















(6)

s.t. uw ≥ UACR(S , ξw) − α ∀w = 1, . . . ,W (7)

uw ≥ 0 ∀w = 1, . . . ,W (8)

α ∈ R (9)

It is easy to conclude that the CVaR-UAC is NP-hard [5].

2.3. Theoretical guarantees

We first consider a particular situation for CVaR-UAC, where the sensor coverage is limited to finite locations and

the optimization objective is the maximum, which is a discrete version of the maximum CVaR-based area coverage (D-145

CVaR-AC) problem. The presence of finite locations for sensor coverage means that there is a set of finite candidate

locations for deploying sensors. The sensor coverage problem is usually considered as maximizing the covered area

with a limited number of selected sensors. This problem belongs to submodular set optimization, which plays an

important role in combinatorial optimization [40]. We will take advantage of the properties from submodular set

functions to provide the submodularity and theoretical guarantees of D-CVaR-UAC.150

Lemma 1. The maximum D-CVaR-AC problem is monotone, submodular.

Proof. We utilize Eq. (2) to prove the lemma. Eq. (2) describes a basic coverage function for sensor coverage.

Typically, a sensor coverage problem is maximizing the coverage, where the coverage function is a submodular set-

functions [36]. In addition to submodularity, the coverage function is also monotone in the number of sensors [40].

According to the definition of CVaR, it measures the expected value with a confidence level within 1 − β for155

W different scenarios. Thus, the CVaR of area coverage rate (ACR) can be obtained by averaging the ACR on a

subset of all scenarios, which is a linear combination of ACR for a set of sensor S . The ACR can be calculated as

ACR(S ) = 1 − UACR(S ) =
∑L

x=0

∑L
y=0 cxy(S )

L∗L
, which is a positive linear combinations of coverage function. Therefore, as

suggested in [28], a positive linear combination of submodular functions is submodular, and the D-CVaR-AC problem

is also submodular.160

Regarding monotonicity, it is easy to observe that the D-CVaR-AC is monotone as a positive linear combination

of coverage functions.
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Theorem 1. For the maximum D-CVaR-AC, Algorithm 2 achieves an approximation ratio of 1 − e−1.

Proof. We follow the proof of [28] and [15] to analyze the approximation ratio of the proposed algorithm. In [28], it

is shown that a suboptimal solution by the greedy algorithm can achieve an approximation ratio of 1 − e−1 for mono-165

tone submodular optimization problems. Moreover, in [15], a global simple evolutionary multiobjective optimizer

(GSEMO) can achieve a
(

1 − e−1
)

-approximation based on [28]. GSEMO is an evolutionary optimization framework

with local search operations and greedy behavior, which has the same approximation ratio as the greedy algorithm.

The proposed Algorithm 2 also exhibits excellent search abilities due to its co-evolutionary, adaptive perturbation,

and EMT techniques. These techniques divide the decision space, jump out of local optima, and decompose the prob-170

lem into subproblems, providing global search and maintain diversity during the evolution. Therefore, the proposed

algorithm is less likely to end up in poor local optima compared to traditional PSO and (1+1) EA, which only have an

approximation ratio of 1/2 (in (1+1) EA [15]).

Proposition 1. For the discrete version of the minimum CVaR-UAC (D-CVaR-UAC) problem, Algorithm 2 achieves

an approximation ratio of 1 +
1− f (opt)

f (opt)
e−1, where f (opt) is a value of feasible optimal solution.175

Proof. Let f (S ) and g(S ) represent the function of D-CVaR-UAC and D-CVaR-AC, respectively. We have f (S ) =

1 − g(S ). According to Theorem 1, we have g(S ) ≥ (1 − e−1)g(opt). This lead to

1 − f (s) ≥ (1 − e−1)(1 − f (opt)).

Therefore, the solution obtained by Algorithm 2 with a value

f (s) ≤ 1 − (1 − e−1)(1 − f (opt)) = 1 − (1 − e−1 − f (opt) + e−1 f (opt))

= e−1 + f (opt) − e−1 f (opt) =
e−1

f (opt)
f (opt) + (1 − e−1) f (opt)

=

(

1 +
1 − f (opt)

f (opt)
e−1

)

f (opt).

3. The proposed method

Since the minimum CVaR-UAC problem is NP-hard, there is no polynomial-time algorithm to obtain the exact

solution. Therefore, metaheuristics are applied to solve this problem with an approximate solution. PSO has been

widely used to deal with the sensor deployment problem. It is a swarm-based intelligent method inspired by the social180

behavior of a flock of birds developed by Kennedy and Eberhart [20]. However, some drawbacks of using PSO are as

follows:

• Since the particle is updated based on its personal best particle and the global best particle, the algorithm will

quickly converge to local minima and cause premature convergence. As a result, the particles’ diversity is hard

to maintain, especially for those large-scale, high-dimensional problems.185

• PSO lacks the ability to escape from local minima when all the particles are converged to the same local optimal

solution.

As discussed in [14], for large-scale, high-dimensional problems, existing metaheuristic approaches can be clas-

sified into three types: (1) decision variable decomposition using the divide-and-conquer mechanism; (2) developing

new evolutionary operators; (3) transformation-based methods by generating and solving new small-scale problems.190

Therefore, our approach considers all three types: (1) VFCPSO is used as the basic search engine; (2) In order to

improve the algorithm, the population is initialized using a hybrid method of random and heuristic initialization. An

adaptive disturbance technique is utilized in VFCPSO (ad-VFCPSO) for individual updating; (3) Simplified CVaR-

UACS problems will be generated as auxiliary or helper tasks of the original problem by sensor grouping and area

partitioning, enabling the use of EMT to solve the CVaR-UAC problem.195
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In this section, we introduce the proposed efficient PSO with EMT for CVaR-UAC in detail, including how to

construct the simplified CVaR-UACS from the original CVaR-UAC, how to initialize the population, how to update

the individuals of the particle swarm by ad-VFCPSO, and how to transfer knowledge from the simplified CVaR-UACS

to the original CVaR-UAC using EMT-ad-VFCPSO (ad-VFCPSO with evolutionary multitasking).

3.1. Simplified CVaR-UACS construction200

We construct the simplified CVaR-UACS problem by grouping sensors and partioning the area of the original

CVaR-UAC problem. The original problem is decomposed into simplified versions. For a CVaR-UAC, there are N

sensors to be deployed in WSNs, and the position for each sensor is described using a coordinate system as (xi, yi).

Therefore, a real-coded encoding scheme is adopted. A solution for N sensors can be represented as (x1, y1, x2, y2, x3,

y3, . . . , xN , yN), which is 2N-dimensional for N sensors. This individual representation is frequently used for coverage205

problems in WSNs [18], and can be easily utilized in PSO-based algorithms.

Random or heuristic methods are used to group sensors and partition the area to construct the simplified CVaR-

UACS . The number of different groups or areas is defined as NG, resulting in NG simplified CVaR-UACS . Each sensor

is subjected to the following constraints:

NG
∑

k=1

zik = 1 (10)

where zik = 1 if sensor i assigned to area/group k, otherwise, zik = 0. Eq. (10) denotes that each sensor should be

assigned to one area/group. When the area is divided into NG small areas, and the constraints in Eq. (10) are satisfied

for all sensors, the construction of the CVaR-UACS is finished. The process of the proposed construction of CVaR-

UACS is illustrated in Fig. 2. Without loss of generality, the value of NG can be set as needed. We select NG = 4 in210

this paper. In Fig. 2, there are N = 23 sensors with three types, in which N1 = 4 for type I, N2 = 6 for type II, and

N3 = 13 for type III with sensing range, r1, r2, and r3, respectively. The number of groups/areas is NG = 4.

With a particular sensor grouping and area partitioning configuration, we only need to determine the position of

sensors in each group in the assigned area. The encoding scheme for the individuals is shown in Fig. 3. It should be

noted that simplified CVaR-UACS act as helper tasks for the original CVaR-UAC. Therefore, the whole individuals215

are divided into two parts, one for simplified CVaR-UACS , and the other for CVaR-UAC. As shown in Fig. 3, the

assignment of sensors to areas/groups can only be seen in the individuals for simplified CVaR-UACS . The sensor

types and the area/group assignments in Fig. 3 are determined according to Fig. 2.

For the first part of individuals for simplified CVaR-UACS , each element represents the sensor position (xi, yi) and

the area/group assignment zik. For example, Fig. 3 shows the position of sensor 7 and the assignment of sensor 4 to220

area/group 4. For the second part of individuals for CVaR-UAC, each element only represents the sensor position.

CVaR-UACS related to different sensor groups and areas for deployment is identified by the task number k (1 ≤

k ≤ NG). The basic properties of the simplified CVaR-UACS are summarized as follows.

• Nemt
p : The population size of individuals for CVaR-UACS . Since Np is the total population size, we denote

Nmain
p = Np − Nemt

p as the population size of individuals for CVaR-UAC in EMT.225

• NG: The total number of simplified CVaR-UACS tasks.

• femt
k
= [ f emt1

k
f emt2
k

]: The objective functions of CVaR-UACS for task k. There are two optimization objectives

for a simplified CVaR-UACS : the CVaR of the UACR in area k, which is f emt1
k

, and the CVaR of the UACR in

areas other than area k, which is f emt2
k

.

• task(k).D: The dimension of the kth CVaR-UACS .230

• task(k).xi j: The position of the ith particle in dimension j for task k.

• task(k).pi j: The best position of the ith particle in dimension j for task k.

• task(k).pg j: The best position of the whole particles in dimension j for task k.
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Fig. 3: Encoding scheme of the individuals in the population.

• task(k).b( j, z): The best position of the whole particles with dimension j subsititute by z for task k.

Remark 2. When comparing two deployment schemes (S 1 and S 2) of CVaR-UACS for task k, scheme S 1 is better235

than scheme S 2 when ( f emt1
k

(S 1) > f emt1
k

(S 2)) or ( f emt1
k

(S 1) = f emt1
k

(S 2) and f emt2
k

(S 1) > f emt2
k

(S 2)).
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Algorithm 1 Hybrid Initialization Based on VFA

Input:

ri: Sensing range of sensor i

wA,wR, dth,C: Parameters for VFA

MaxLoop: Maximum number of loops for adjusting sensor locations using VFA

f : Objective function

Output:

IND: Individual solution after hybrid initialization

1: Generate the individual solution IND randomly.

2: INDnew = IND.

3: Set loops = 1.

4: while loops ≤ MaxLoop do

5: Calculate virtual force F using wA,wR, dth,C on each sensor.

6: INDnew = INDnew + F/10.

7: Refine the position of each sensor from individual INDnew within the preferred deployment area of the sensor.

8: Calculate fitness value of individual f (INDnew).

9: if f (INDnew) ≤ f (IND) then

10: IND = INDnew.

11: end if

12: loops = loops + 1.

13: end while

14: return

3.2. Population initialization

In most studies, individuals of the population for evolutionary algorithms (EAs) are usually initialized randomly to

ensure diversity. However, these initial solutions are often of low quality, making it difficult for algorithms to converge

to optimal or near-optimal solutions. Heuristic initialization for EAs has been applied to many complex optimization240

problems [45]. An initial population with good quality generally provides better solutions for the optimization prob-

lem. However, if the entire population is provided by the heuristic solutions, the population may lack diversity, which

reduces the ability to obtain new solutions. Therefore, in our PSO-based algorithm, each individual in the population

(both individuals for simplified CVaR-UACS and CVaR-UAC) is generated with random and heuristic initialization.

We develop the initialization method by taking inspiration from the popularly used algorithms for WSNs, i.e.,245

VFA [49]. The location of each sensors is adjusted based on the force from other sensors that either push away or

pull toward it, depending on the distance. We use random initialization to obtain different initial locations. Then,

the locations are adjusted by VFA, and a hybrid initialization method is developed. As a result, these solutions have

good quality for coverage and randomness for diversity. Specifically, a solution can be obtained by Algorithm 1. We

adopt the VFA in [43], which only considers attractive force between sensors within a certain range. However, the250

repulsive force in Algorithm 1 differs from [43]. It is proportional to the difference between the sensors’ distance di j

and a threshold dth (|F| = wR(dth − di j), where wR is a parameter for repulsive force), similar to the attractive force

(|F| = wA(di j − dth), where wA is a parameter for attractive force). The preferred deployment area for sensor i is

restricted based on the individual type. If the individual is used for simplified CVaR-UACS , the preferred deployment

area is the assigned subarea after partitioning. If the individual is used for the original CVaR-UAC, the preferred255

deployment area is [0, L] × [0, L] (L is the side length of the deployment area). The maximum number of loops for

VFA is set to MaxLoop = 20 based on empirical study.

3.3. ad-VFCPSO

d-PSO and VFCPSO are two efficient algorithms used to tackle the sensor deployment problem [7, 43]. The

disturbance operator in d-PSO is a Gaussian perturbation that prevents local convergence. However, it may not always260

be effective during the entire optimization process. Similar to the limitations of using a single mutation operator

[22], the best disturbance results cannot be achieved only by one perturbation strategy, but rather by combining
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different perturbation strategies at different stages for the best performance. The Gaussian perturbation operator used

in the disturbance operator is suitable for local search [41]. Inspired by the adaptive mutation operator proposed in

[22, 41], an adaptive disturbance is introduced by adaptively selecting three distributions (i.e., Gaussian, Cauchy, and265

Lévy). The first perturbation is suited for local search, while the latter two are suited for global search. The adaptive

disturbance is added as a perturbation to the velocity item, where it is added to the global best value in [22], and both

the global best value and personal best value in [41].

Therefore, we improve d-PSO with an adaptive disturbance and VFCPSO to obtain ad-VFCPSO. Eqs. (11) and

(12) are used to update the velocity and position of a particle in ad-VFCPSO.

vt+1
id =c0 ∗ na

i +c1 ∗ r1i ∗ (pt
id − xt

id)+c2 ∗ r2i ∗ (pt
gd − xt

id)

+ c3 ∗ r3i ∗ gt
id (11)

xt+1
id =xt

id + vt+1
id (12)

where vt+1
id

and xt+1
id

are the velocity and position of the ith particle in dimension d at time t + 1, respectively. pt
id

and pt
gd

are the best position of the ith particle and the whole particles in dimension d at time t, respectively. c0 is

the disturbance factor that controls the effect of the adaptive disturbance. c1 and c2 are acceleration constants, also

known as the cognitive factor and social factor. These constants control the motion of the particle to its personal best

position and global best position, respectively. c3 is the acceleration constant that controls the particle by the virtual

force. r1, r2, and r3 are random values with uniform distribution [0, 1]. na
i

is the adaptive disturbance operator of the

ith particle selected from three distributions (i.e., Gaussian, Cauchy, and Lévy). The Gaussian distribution used here

is G(µ = 0, σ = 1). Cauchy distribution is C(x0 = 0, s = 1) and Lévy distribution is L(µ = 0, c = 1) (can be calculated

by Mantegna’s algorithm [27] as a symmetric Lévy stable distribution). All three distributions will be multiplied by a

“disturbance learning rate” δ. Following the elitist learning strategy [48], it is suggested that δ be linearly decreased

with the number of the iteration, which is

δ = δmax − (δmax − δmin) ×
t

MaxGen
(13)

where δmax and δmin are the upper bound and lower bound of δ. The values of the bounds are set to δmax = 1.0 and

δmin = 0.1 respectively by empirical study. MaxGen is the maximum number of generations.270

The proposed adaptive disturbance operator utilizes the three perturbation operators described above. Each oper-

ator has a selection ratio denoted by pg, pc, and pl, which satisfies pg+ pc+ pl = 1. Initially, all values are set to 1/3,

meaning that the probability of selecting each operator is equal. These values are updated during evolution as follows.

pg = γ + (1 − 3 · γ) ·
sucg

sucd

(14)

pc = γ + (1 − 3 · γ) ·
succ

sucd

(15)

pl = γ + (1 − 3 · γ) ·
sucl

sucd

(16)

where sucg is the successful number of Gaussian perturbations, succ is the successful number of Cauchy perturbations,

sucl is the successful number of Lévy perturbations, sucd is the successful number of disturbance operations, and

sucg + succ + sucl = sucd. These values are updated along with particles’ personal best value pi. The parameter γ is

the minimum selection ratio set to 0.05 [41].

gt
id

is the motion suggested by virtual force of the ith particle in dimension d. For more information on virtual275

force and VFCPSO, please refer to [43].

In addition to adopting the velocity and position updating Eqs. (11) and (12), ad-VFCPSO utilizes a co-evolutionary

manner. The solution vector of a particle is divided into small values, which is the key idea from co-evolutionary par-

ticle swarm optimization (CPSO) [6]. Therefore, a 2N-dimensional vector is split into a 1-D problem for 2N swarms.

For more details, readers can refer to [6, 7, 43].280

3.4. EMT-ad-VFCPSO

Fig. 4 illustrates the framework of EMT-ad-VFCPSO. The problem of CVaR-UAC is first decomposed by sensor

grouping and area partitioning to obtain NG simplified CVaR-UACS . Then, the individuals of the simplified CVaR-
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Fig. 4: Illustration of EMT-ad-VFCPSO framework

UACS and CVaR-UAC are initialized using a hybrid initialization method. ad-VFCPSO is adopted as the search

engine for individual updating. Therefore, the algorithm performs ad-VFCPSO for both the simplified CVaR-UACS285

and the original CVaR-UAC, while knowledge transfer is conducted between them. The pseudo-code of the proposed

EMT-ad-VFCPSO is shown in Algorithm 2. The evolutionary process consists of three parts, including the individual

updating for CVaR-UACS (line 4–14 in Algorithm 2), knowledge transfer from CVaR-UACS to CVaR-UAC (line

15–20 in Algorithm 2), and the individual updating for CVaR-UAC (line 21–30 in Algorithm 2). The processes

of individual updating for CVaR-UACS and CVaR-UAC are similar since they both adopt ad-VFCPSO. The main290

difference is that the individuals for CVaR-UACS are updated by tasks with properties introduced in Section 3.1.

Knowledge transfer is a key issue in EMT, as it helps in generating new individuals during the evolutionary pro-

cess. Based on the encoding scheme, the individuals for simplified CVaR-UACS are used to further improve the

individuals for the original CVaR-UAC. Therefore, before the individual updating for CVaR-UAC, the best deploy-

ment schemes for each area obtained from different CVaR-UACS are combined as a deployment scheme pemt
g for all295

areas to update the global best particle pg in CVaR-UAC. Furthermore, similar to the CPSO, each dimension of the

global best particle in CVaR-UAC is updated by pemt
g in a co-evolutionary manner. The simplified CVaR-UACS is

less complex than the original CVaR-UAC. With the help of simplified tasks, the individuals of the CVaR-UAC will

converge faster.

3.5. Computational complexity300

The computational complexities of the fitness evaluation of the simplified CVaR-UACS and CVaR-UAC are

O(Aemt
search

· Nemt · W) and O(Asearch · N · W), respectively, where Aemt
search

is the number of grids to be covered in

the simplified CVaR-UACS , Asearch is the number of grids to be covered in CVaR-UAC, Nemt is the total number of

sensors in the simplified CVaR-UACS , N is the total number of sensors in CVaR-UAC, and W is the total number of

scenarios for CVaR calculation.305

The computational complexities of the calculation of total virtual force for simplified CVaR-UACS and CVaR-

UAC are O((Nemt)2) and O(N2), respectively.

As for the initialization, the computational complexities with VFA of the simplified CVaR-UACS and CVaR-UAC

are O(Nemt
p · NG · MaxLoop · Nemt · (Aemt

search
·W + Nemt)) and O(Nmain

p · MaxLoop · N · (Asearch ·W + N)), respectively,
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Algorithm 2 EMT-ad-VFCPSO

Input:

Nemt
p ,N

main
p : Particle size for CVaR-UACS and CVaR-UAC

D, task(k).D: Swarm size (dimension size) for CVaR-UAC and task k of CVaR-UACS

f , f emt
k

: Objective function for CVaR-UAC and CVaR-UACS of task k

b( j, z) ≡ (pg1, pg2, pg3, . . . , pg( j−1), z, pg( j+1), . . . , pgD)

task(k).b( j, z) ≡ (task(k).pg1, task(k).pg2, task(k).pg3, . . . , task(k).pg( j−1), z, task(k).pg( j+1), . . . , task(k).pg,task(k).D)

Output:

p∗g: Final solution (global best particle)

1: Construct multiple simplified sensor deployment problems (CVaR-UACS ).

2: Initial the particles, pg, pc and pl for both individuals for simplified CVaR-UACS and CVaR-UAC.

3: while Stopping criteria not satisfied do

4: /* Individual updating for CVaR-UACS */

5: for k = 1 to NG do

6: for j = 1 to task(k).D do

7: for i = 1 to Nemt
p do

8: Determine which disturbance operator to be conducted based on the selection ratio pg, pc, and pl.

9: Update particles by Eqs. (11) and (12) for CVaR-UACS .

10: Update task(k).pi j by f emt
k

(task(k).b( j, task(k).xi j) and f emt
k

(task(k).b( j, task(k).pi j) and update the

successful number of perturbations.

11: Update task(k).pg j by f emt
k

(task(k).b( j, task(k).pi j) and f emt
k

(task(k).pg).

12: end for

13: end for

14: end for

15: /* Knowledge transfer from CVaR-UACS to CVaR-UAC */

16: Construct a deployment scheme pemt
g from the global best particles of all tasks task.pg.

17: Update pg by min{ f (pemt
g ), f (pg))}.

18: for j = 1 to D do

19: Update pg j by min{ f (b( j, pemt
g j

), f (pg))}.

20: end for

21: /* Individual updating for CVaR-UAC */

22: for j = 1 to D do

23: for i = 1 to Nmain
p do

24: Determine which disturbance operator to be conducted based on the selection ratio pg, pc, and pl.

25: Update particles by Eqs. (11) and (12) for CVaR-UAC.

26: Update pi j by min{ f (b( j, xi j), f (b( j, pi j))} and the successful number of perturbations.

27: Update pg j by min{ f (b( j, pi j), f (pg))}.

28: end for

29: Update pg, pc, and pl by Eqs. (14), (15), and (16).

30: end for

31: end while

32: p∗g = pg.

33: return

where Nemt
p is the population size for the simplified CVaR-UACS , NG is the total task groups, Nmain

p is the population310

size for the CVaR-UAC, and MaxLoop is the maximum number of loops for VFA.

In each iteration of the evolution, there are three parts, which are the individual updating for CVaR-UACS , knowl-

edge transfer from CVaR-UACS to CVaR-UAC, and the individual updating for CVaR-UAC. The computational

complexities for the three parts are O(Nemt
p · NG · Demt · Nemt · (Aemt

search
· W + Nemt)), O(D · Asearch · N · W), and

O(Nmain
p · D · N · (Asearch ·W + N)), respectively, where Demt is the dimension of the simplified CVaR-UACS and D is315

13



the dimension of the CVaR-UAC.

To sum up, the computational complexity of EMT-ad-VFCPSO is O(Nemt
p · NG · Nemt · (Aemt

search
· W + Nemt) ·

(MaxLoop+ niter ·D
emt)+ Nmain

p · N · (Asearch ·W + N) · (MaxLoop+ niter ·D)), where niter is the number of iterations.

Since Aemt
search

·W ≫ Nemt, niter ·D
emt ≫ MaxLoop, Asearch ·W ≫ N, niter ·D ≫ MaxLoop, Demt = 2Nemt, and D = 2N,

the computational complexity of EMT-ad-VFCPSO is O(niter ·N
emt
p ·NG ·A

emt
search
·W ·(Nemt)2+niter ·N

main
p ·Asearch ·W ·N

2).320

Remark 3. When Nemt
p = 0 and Nmain

p = Np, EMT-ad-VFCPSO degenerates to ad-VFCPSO with hybrid initialization

without EMT (EMT-ad-VFCPSO-1). The computational complexity of EMT-ad-VFCPSO-1 is O(niter · Np · Asearch ·

W · N2). When Nmain
p = 0 and Nemt

p = Np, all individuals are used for simplified CVaR-UACS (EMT-ad-VFCPSO-2).

The computational complexity of EMT-ad-VFCPSO-2 is O(niter · Np · NG · A
emt
search

·W · (Nemt)2). Since N ≈ NG · N
emt,

Asearch > Aemt
search

, and N > Nemt, for NG > 2, the computational complexity of EMT-ad-VFCPSO-1 is larger than that325

of EMT-ad-VFCPSO-2. As a result, there will be less computation time for EMT-ad-VFCPSO with more proportion

of EMT.

4. Experimentation design

This section presents the algorithms and the experiment. Firstly, we briefly describe the state-of-the-art algorithms

used for comparison. Then, we provide test instances and parameter settings used in our experiment.330

4.1. Algorithms for comparison

In order to evaluate the performance of EMT-ad-VFCPSO, the following algorithms are considered for compari-

son.

• ad-VFCPSO is the basis of EMT-ad-VFCPSO, which uses the adaptive perturbation in the velocity updating in

the VFCPSO evolution. The hybrid initialization method and EMT are not considered.335

• RPSO [44] uses the resampling, mutation, and small vibration process to PSO.

• CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [19] uses a probability model to obtain new solu-

tions sampled from a multivariate normal distribution.

• GA1 [18] uses a tournament selection, Laplace crossover and arithmetic crossover operators, and Gaussian

mutation.340

• GA2 [47] uses a random selection, BLA-α crossover operator, and Gaussian mutation.

4.2. Test instances

The parameter settings of the test instances are as follows. We assume that all the sensors are heterogeneous and

deployed in a 100 × 100m2 square area with L = 100. The grid size grid is 5m. The probabilistic detection model

parameters are set as α1 = 1, α2 = 0, β1 = 1, β2 = 0.5. The total number of scenarios is set to W = 20. The β in the345

CVaR risk measure is set to 0.9. For each scenario, the range detection error re with uncertainty is sampled from a

uniform distribution in [0.1r, 0.5r].

There are three types of sensors with the sensing range r1, r2, and r3, respectively, where r2 = 0.8r1 and r3 = 0.8r2.

The number of sensors for each type are N1, N2, and N3, with N1 +N2 +N3 = N. τ is referred to as the tightness ratio.

There are 20 test instances shown in Table 2. Some parameters of these test instances are adopted from [47], except350

for those uncertainty-related parameters. It is a new version with some parameters widely used in [18, 46, 47].
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Table 2: Test instances.

Instance r1 N1 r2 N2 r3 N3 N τ

S1-0.7 14.00 5 11.20 5 8.96 7 17 0.68

S2-0.7 12.00 6 9.60 8 7.68 10 24 0.69

S3-0.7 10.00 8 8.00 12 6.40 16 36 0.70

S4-0.7 8.00 12 6.40 18 5.12 27 57 0.70

S5-0.7 6.00 22 4.80 32 3.84 47 101 0.70

S1-0.8 14.00 5 11.20 6 8.96 10 21 0.80

S2-0.8 12.00 6 9.60 9 7.68 14 29 0.79

S3-0.8 10.00 9 8.00 13 6.40 19 41 0.79

S4-0.8 8.00 14 6.40 20 5.12 29 63 0.78

S5-0.8 6.00 25 4.80 36 3.84 55 116 0.80

S1-0.9 14.00 6 11.20 7 8.96 10 23 0.90

S2-0.9 12.00 7 9.60 11 7.68 14 32 0.89

S3-0.9 10.00 11 8.00 14 6.40 21 46 0.90

S4-0.9 8.00 16 6.40 23 5.12 34 73 0.90

S5-0.9 6.00 28 4.80 41 3.84 61 130 0.90

S1-1.0 14.00 7 11.20 8 8.96 10 25 1.00

S2-1.0 12.00 8 9.60 11 7.68 17 36 1.00

S3-1.0 10.00 12 8.00 16 6.40 23 51 0.99

S4-1.0 8.00 18 6.40 27 5.12 35 80 1.00

S5-1.0 6.00 31 4.80 48 3.84 65 144 1.00

4.3. Parameter settings

The simulation was implemented on an Intel Core i7-7700HQ (2.81 GHz) computer with 16 GB RAM using

MATLAB R2018b. Several state-of-the-art algorithms were compared with EMT-ad-VFCPSO. The parameter settings

of the compared algorithms were kept the same as the original papers. Table 3 shows the general and algorithm-355

specific parameter settings.

The particle/population size was set to Np = 50, and the maximum number of fitness evaluations was set to

MaxFEs = 25000. The independent runs for each algorithm on each instance were set to 20. In EMT-ad-VFCPSO,

the number of groups/subareas was set to NG = 4. This algorithm also uses c0 to control the adaptive disturbance and

Nemt
p /N

main
p to control the proportion of simplified CVaR-UACS in EMT. Meanwhile, a hybrid initialization method360

was applied in EMT-ad-VFCPSO. After the empirical studies in Section 5.3, we adopted the parameter settings, i.e.,

c0 = 0.5, Nemt
p /N

main
p = 25, and a 100% hybrid initialization rate. In order to divide the sensors into groups, we

employed a strategy that minimizes the difference between the total sensing area of the sensors in a group. Thus, we

obtained four sensor groups with a similar total area.

Note that the specific parameters of RPSO: threshold value of particle aggregation degree (PADth) and maximum365

active value (AVmax) were not given in the original paper [44]. We experimented PADth with 50, 100, 200, and 300,

AVmax with 2, 5, and 10. We found that by empirical testing, PADth = 200, and AVmax = 2 provided the best overall

performance.

5. Results and discussions

This section presents the experimental results on the test instances introduced in Section 4.2. The performance370

of EMT-ad-VFCPSO is compared with several state-of-the-art algorithms on several categories. Additionally, the

analyses of knowledge transfer and parameter settings are presented.

5.1. Performance comparison of algorithms

5.1.1. CVaR of UACR

To evaluate the quality of the obtained solutions, we use the indicator RPD (relative percentage deviation) for

measuring the amount of improvement over the CVaR of UACR. A smaller RPD indicates a better solution for CVaR-
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Table 3: Parameter settings for EMT-ad-VFCPSO and comparison algorithms.

General Settings

Particle/population Size Np = 50

Termination Condition MaxFEs = 25000

Independent Runs 20

Significance Test The Wilcoxon rank-sum test at a 0.05 significance level

EMT-ad-VFCPSO

Particle Size Nemt
p = Nmain

p = 25

Inertia Weight Linear decreasing from 0.9 to 0.4

Disturbance Factor c0 = 0.5

Acceleration Constants c1 = c2 = c3 = 1

Parameters of Virtual Force The same as [43]

Hybrid Initialization Rate 100%

Maximum number of loops for adjusting sensor locations using VFA MaxLoop = 20

Minimum Selection Ratio γ = 0.05

Number of Groups/Subareas NG = 4

Sensor Grouping Strategy Divided into groups with a minimum difference in total area

Area Partitioning Strategy Divided into 4 subareas with a 50 × 50m2 square area

RPSO

Acceleration Constants c1 = c2 = 2.05

Threshold Value of Particle Aggregation Degree PADth = 200

Maximum Active Value AVmax = 2

GA1

Arithmetic Crossover Rate 0.9

Laplace Crossover Rate 0.1

Mutation Rate 1/N

Standard Deviation for Gaussian Mutation Absolute value of the difference between two parents

GA2

BLA-α Crossover α = 0.5

Mutation Rate 0.1/N

Standard Deviation for Gaussian Mutation L/2

UAC. RPD is calculated as

RPD =
f (alg) − f (re f )

f (re f )
× 100 (17)

where f (alg) is the objective value (CVaR of UACR) obtained by any test algorithms and f (re f ) is the reference value375

for an instance. In this paper, f (re f ) is the best solution among the compared algorithms on 20 independent runs.

Table 4 shows the statistical results of EMT-ad-VFCPSO on the CVaR of the UACR and RPD compared with other

state-of-the-art algorithms. The data show the mean value and standard deviation of the algorithms in 20 independent

runs. The mean value of the algorithm is used for calculating the mean RPD. The best results are indicated in bold.

Each algorithm is compared by the Wilcoxon rank-sum test with a significance level of 0.05. The rank-sum test result380

is 1 when one algorithm is superior to another. Otherwise, the rank-sum test result is 0. The Score denotes the total

score of each algorithm against others. It is the sum of the rank-sum test results on all test instances.

The overall performance of EMT-ad-VFCPSO is significantly better than the compared algorithms, winning 86

cases among the 100 comparisons. This result shows that the hybrid initialization method and EMT positively impact

the performance of the ad-VFCPSO framework. Specifically, EMT-ad-VFCPSO performs better on 17 instances,385

while ad-VFCPSO performs second with a total score of 72. ad-VFCPSO performs better on two instances (S1-0.7

and S2-0.9). It shows good performance with the adaptive disturbance on VFCPSO, which proves its effectiveness in
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Table 4: Results of the comparison on the objective value on 20 test instances.

Instance
EMT-ad-VFCPSO ad-VFCPSO RPSO [44] CMA-ES [19] GA1 [18] GA2 [47]

mean ± std RPD mean ± std RPD mean ± std RPD mean ± std RPD mean ± std RPD mean ± std RPD

S1-0.7 0.5604 ± 0.0009 0.25 0.5599 ± 0.0006 0.16 0.5640 ± 0.0019 0.89 0.5606 ± 0.0010 0.29 0.5730 ± 0.0048 2.50 0.5611 ± 0.0014 0.38

S2-0.7 0.5269 ± 0.0003 0.10 0.5270 ± 0.0003 0.12 0.5332 ± 0.0025 1.30 0.5299 ± 0.0017 0.67 0.5554 ± 0.0104 5.52 0.5289 ± 0.0014 0.49

S3-0.7 0.4962 ± 0.0006 0.32 0.4964 ± 0.0008 0.36 0.5041 ± 0.0032 1.91 0.4999 ± 0.0024 1.06 0.5369 ± 0.0181 8.53 0.4988 ± 0.0016 0.84

S4-0.7 0.4370 ± 0.0008 0.35 0.4392 ± 0.0009 0.85 0.4549 ± 0.0057 4.46 0.4550 ± 0.0049 4.49 0.5211 ± 0.0290 19.67 0.4435 ± 0.0041 1.85

S5-0.7 0.3722 ± 0.0022 0.97 0.3801 ± 0.0032 3.11 0.3928 ± 0.0059 6.55 0.4018 ± 0.0059 9.01 0.4980 ± 0.0294 35.09 0.3886 ± 0.0085 5.42

S1-0.8 0.4715 ± 0.0014 0.36 0.4717 ± 0.0013 0.42 0.4775 ± 0.0027 1.65 0.4728 ± 0.0016 0.64 0.5024 ± 0.0173 6.94 0.4744 ± 0.0023 0.98

S2-0.8 0.4478 ± 0.0005 0.21 0.4486 ± 0.0005 0.38 0.4565 ± 0.0041 2.15 0.4517 ± 0.0024 1.08 0.4935 ± 0.0189 10.43 0.4530 ± 0.0039 1.36

S3-0.8 0.4309 ± 0.0012 0.42 0.4324 ± 0.0013 0.76 0.4432 ± 0.0031 3.28 0.4327 ± 0.0026 0.84 0.4791 ± 0.0106 11.65 0.4358 ± 0.0035 1.56

S4-0.8 0.3712 ± 0.0015 0.66 0.3748 ± 0.0025 1.66 0.3957 ± 0.0072 7.32 0.3954 ± 0.0087 7.22 0.4772 ± 0.0252 29.42 0.3822 ± 0.0051 3.66

S5-0.8 0.2856 ± 0.0033 2.07 0.3046 ± 0.0046 8.85 0.3187 ± 0.0058 13.92 0.3302 ± 0.0100 18.03 0.4409 ± 0.0315 57.59 0.3135 ± 0.0087 12.04

S1-0.9 0.4077 ± 0.0013 0.59 0.4096 ± 0.0015 1.08 0.4143 ± 0.0017 2.22 0.4084 ± 0.0017 0.78 0.4482 ± 0.0099 10.60 0.4110 ± 0.0029 1.42

S2-0.9 0.3753 ± 0.0023 1.13 0.3752 ± 0.0018 1.10 0.3875 ± 0.0054 4.44 0.3776 ± 0.0045 1.77 0.4349 ± 0.0257 17.19 0.3804 ± 0.0050 2.50

S3-0.9 0.3642 ± 0.0011 0.65 0.3658 ± 0.0017 1.10 0.3779 ± 0.0058 4.44 0.3687 ± 0.0048 1.88 0.4296 ± 0.0172 18.71 0.3683 ± 0.0034 1.79

S4-0.9 0.2946 ± 0.0022 1.31 0.3001 ± 0.0029 3.20 0.3258 ± 0.0060 12.04 0.3208 ± 0.0088 10.32 0.4196 ± 0.0305 44.29 0.3118 ± 0.0080 7.22

S5-0.9 0.2226 ± 0.0040 4.48 0.2424 ± 0.0064 13.76 0.2540 ± 0.0087 19.21 0.2666 ± 0.0131 25.10 0.3944 ± 0.0311 85.10 0.2523 ± 0.0123 18.42

S1-1.0 0.3528 ± 0.0024 1.20 0.3530 ± 0.0023 1.25 0.3616 ± 0.0030 3.72 0.3564 ± 0.0030 2.22 0.4082 ± 0.0180 17.08 0.3576 ± 0.0032 2.57

S2-1.0 0.3120 ± 0.0026 2.62 0.3123 ± 0.0024 2.72 0.3254 ± 0.0074 7.02 0.3103 ± 0.0034 2.07 0.3794 ± 0.0185 24.78 0.3162 ± 0.0046 4.00

S3-1.0 0.2992 ± 0.0026 2.25 0.3010 ± 0.0028 2.89 0.3139 ± 0.0084 7.28 0.2995 ± 0.0049 2.36 0.3837 ± 0.0257 31.14 0.3080 ± 0.0056 5.26

S4-1.0 0.2314 ± 0.0033 2.31 0.2426 ± 0.0041 7.23 0.2606 ± 0.0090 15.19 0.2559 ± 0.0079 13.15 0.3744 ± 0.0299 65.54 0.2491 ± 0.0104 10.12

S5-1.0 0.1588 ± 0.0045 5.80 0.1900 ± 0.0059 26.59 0.1950 ± 0.0101 29.92 0.2083 ± 0.0182 38.81 0.3705 ± 0.0269 146.87 0.1937 ± 0.0099 29.05

Average 1.40 3.88 7.45 7.09 32.43 5.54

Score† 86 72 24 40 0 46

† There are a total of 100 comparisons in the Wilcoxon rank-sum test for each algorithm. Therefore, the full mark of each algorithm is 100.

being used as the framework for EMT-ad-VFCPSO. GA2 performs third among the algorithms, with a total score of

46, while CMA-ES performs fourth with a total score of 40. CMA-ES performs better on instance S2-1.0.

In terms of RPD, the average values of RPD in Table 4 show that EMT-ad-VFCPSO performs better than other390

algorithms with a value of 1.40, and ad-VFCPSO ranks second. The RPD of EMT-ad-VFCPSO is below 1 on more

than half of the test instances, mainly for the instances before S5-0.8 with S1-0.9 and S3-0.9. It means the relative

deviation is within 1%, which shows a good performance of EMT-ad-VFCPSO. For other more complex instances,

the worst case is 5.8% on instance S5-1.0 from EMT-ad-VFCPSO. It still outperforms other algorithms significantly,

which are all over 25%.395

The final deployments of the algorithms (EMT-ad-VFCPSO, ad-VFCPSO, RPSO, CMA-ES, GA1, and GA2) with

the best performance after optimization on two instances (S4-0.7 and S5-1.0) are shown in Figs. 5 and 6, respectively,

with the best in bold in the figure caption. EMT-ad-VFCPSO finds the best deployment for these instances.

5.1.2. Convergence analysis

The convergence curve of the algorithms (EMT-ad-VFCPSO, ad-VFCPSO, RPSO, CMA-ES, GA1, and GA2)400

on two instances (S4-0.7 and S5-1.0) are shown in Fig. 7. It can be observed that EMT-ad-VFCPSO obtains better

solutions from the convergence curve in the figure. It also converges fast at the beginning. The reasons are as follows.

• The hybrid initialization method in EMT-ad-VFCPSO is effective in obtaining high-quality initial solutions. As

shown in Fig. 7, the initial point of the convergence curve is much smaller than that of other algorithms. This

good start for the evolution significantly improves the exploration of the algorithm.405

• EMT-ad-VFCPSO first conducts the individual updating for CVaR-UACS . Since we decompose CVaR-UAC

into simplified CVaR-UACS , the simplified versions are easier to solve than CVaR-UAC based on the complex-

ity of the problem. As a result, the solutions from simplified CVaR-UACS can formulate a useful deployment

scheme transferred to the original CVaR-UAC to obtain near-optimal solutions at the beginning stage of the

evolution.410

Among the other algorithms, although RPSO and CMA-ES converge faster to their optimal value at the beginning

stage of the evolution, they are gradually surpassed by ad-VFCPSO and GA2, as shown in Fig. 7. ad-VFCPSO

stands out in the compared algorithms, although its convergence is accelerated only in the later stage of the evolution.
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Fig. 5: The best sensor deployments on instance S4-0.7 with objective value (0.4355, 0.4377, 0.4460, 0.4454, 0.4800, and 0.4374) in each algorithm.

Fig. 6: The best sensor deployments on instance S5-1.0 with objective value (0.1501, 0.1824, 0.1752, 0.1793, 0.3063, and 0.1690) in each algorithm.

However, it still cannot exceed EMT-ad-VFCPSO by the end of the evolution. For a more complex instance, S5-1.0,

the advantage of EMT-ad-VFCPSO is even more pronounced than the compared algorithms. The superior convergence415

speed and quality of EMT-ad-VFCPSO demonstrate the efficiency of the proposed ad-VFCPSO, which integrates the

hybrid initialization method and EMT, for solving CVaR-UAC.
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Fig. 8: Average computation time of the proposed algorithms on 20 test instances.

5.1.3. Computation time

Fig. 8 shows the bar graph of the average computation time of the comparison algorithms on 20 test instances.

As can be seen, EMT-ad-VFCPSO demonstrates excellent computational efficiency, especially with increased test420

instances size.

The computation time of EMT-ad-VFCPSO is obviously less than that of other algorithms on instances S5-0.7, S5-

0.8, S5-0.9, S4-1.0, and S5-1.0, which are large-scale instances with more sensors to be deployed. The computation

time for the fitness evaluations of the simplified CVaR-UACS is much less than that of the CVaR-UAC. This indicates

that the knowledge transfer in EMT-ad-VFCPSO conserves the computing resources during the evolution process425

compared with other algorithms.

For small-scale instances, e.g., instances S1-0.7, S2-0.7, S1-0.8, etc., the computation time of EMT-ad-VFCPSO

is slightly more than that of other algorithms. This could be attributed to the complex calculation for the hybrid

initialization in EMT.

Overall, the proposed EMT-ad-VFCPSO exhibits excellent performance in solution quality, convergence speed,430

and computation time, demonstrating the effectiveness and efficiency of the proposed efficient PSO with EMT for

CVaR-UAC.

5.2. Effectiveness of knowledge transfer

To better show the performance by knowledge transfer in EMT, the illustration of the best transferred solution and

the best solution during knowledge transfer from CVaR-UACS to CVaR-UAC on 20 instances are shown in Fig. 9. As435
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Fig. 9: Illustration of the best transferred solution and the best solution during knowledge transfer from CVaR-UACS to CVaR-UAC on 20 test

instances.

can be seen, the best transfer solutions are generally better than the best solutions, especially at the beginning of the

evolution process. These knowledge transfers have effectively enhanced the search in the evolution process.

The co-evolutionary manner of ad-VFCPSO in the individual updating for CVaR-UACS and CVaR-UAC limits

the frequency of knowledge transfers. Many fitness evaluations are performed before conducting knowledge transfer.

In Fig. 9, the number of knowledge transfers on different instances ranges from 1 to 7, depending on the dimension440

size of the problem. Selecting an appropriate frequency of knowledge transfer deserves further research, which is

beyond the scope of this paper.

5.3. Parameter sensitivity analysis

In this section, we conduct a parameter sensitivity analysis to determine the optimal parameters related to EMT-ad-

VFCPSO. The tested parameters are the population size Np, the adaptive disturbance factor c0, the hybrid initialization445

rate for population initialization, and the proportion of simplified CVaR-UACS in EMT Nemt
p /N

main
p . The sensitivity

experiments are conducted using EMT-ad-VFCPSO on all test instances with 20 independent runs.

5.3.1. Population size

To analyze the sensitivity of Np, we test EMT-ad-VFCPSO on all 20 instances, in which Np ∈ {50, 100, 200}.

The results are presented in Table 5, where the best results are indicated in bold. The mean values for Np = 50 and450

Np = 100 are the same on instance S2-0.7, but the standard deviation for Np = 50 is smaller, indicating more stable

results. All instances for Np = 50 are indicated in bold, demonstrating its superiority over Np = 100 and Np = 200.

The results in Table 5 are compared by the Wilcoxon rank-sum test with a significance level of 0.05. For EMT-ad-

VFCPSO, the best value for Np is 50, with the highest score of 34. Therefore, in this paper, the particle size Np in

EMT-ad-VFCPSO is set to 50.455

5.3.2. Adaptive disturbance factor (c0)

To analyze the sensitivity of c0 in EMT-ad-VFCPSO, we test this algorithm on all 20 instances, in which c0 ∈

{0.1, 0.5, 0.8, 1.0}. The results are presented in Table 6, where the best results are indicated in bold. The results are

compared by the Wilcoxon rank-sum test with a significance level of 0.05. For EMT-ad-VFCPSO, the best value for

c0 is 0.5, with the highest score of 4. Therefore, in this paper, c0 in EMT-ad-VFCPSO is set to 0.5.460
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Table 5: Results of the comparison of EMT-ad-VFCPSO with different parameter Np on 20 test instances.

Instance Np = 50 Np = 100 Np = 200

S1-0.7 0.5604 ± 0.0009 0.5605 ± 0.0008 0.5617 ± 0.0006

S2-0.7 0.5269 ± 0.0003 0.5269 ± 0.0004 0.5278 ± 0.0004

S3-0.7 0.4962 ± 0.0006 0.4976 ± 0.0006 0.4998 ± 0.0010

S4-0.7 0.4370 ± 0.0008 0.4385 ± 0.0011 0.4447 ± 0.0020

S5-0.7 0.3722 ± 0.0022 0.3800 ± 0.0021 0.3858 ± 0.0027

S1-0.8 0.4715 ± 0.0014 0.4725 ± 0.0013 0.4739 ± 0.0013

S2-0.8 0.4478 ± 0.0005 0.4486 ± 0.0007 0.4506 ± 0.0013

S3-0.8 0.4309 ± 0.0012 0.4326 ± 0.0017 0.4361 ± 0.0011

S4-0.8 0.3712 ± 0.0015 0.3748 ± 0.0022 0.3790 ± 0.0028

S5-0.8 0.2856 ± 0.0033 0.2963 ± 0.0036 0.3041 ± 0.0031

S1-0.9 0.4077 ± 0.0013 0.4078 ± 0.0009 0.4088 ± 0.0008

S2-0.9 0.3753 ± 0.0023 0.3766 ± 0.0018 0.3795 ± 0.0024

S3-0.9 0.3642 ± 0.0011 0.3671 ± 0.0013 0.3737 ± 0.0025

S4-0.9 0.2946 ± 0.0022 0.3015 ± 0.0030 0.3078 ± 0.0036

S5-0.9 0.2226 ± 0.0040 0.2280 ± 0.0046 0.2362 ± 0.0045

S1-1.0 0.3528 ± 0.0024 0.3534 ± 0.0025 0.3565 ± 0.0022

S2-1.0 0.3120 ± 0.0026 0.3136 ± 0.0031 0.3199 ± 0.0027

S3-1.0 0.2992 ± 0.0026 0.3039 ± 0.0034 0.3122 ± 0.0032

S4-1.0 0.2314 ± 0.0033 0.2405 ± 0.0033 0.2478 ± 0.0035

S5-1.0 0.1588 ± 0.0045 0.1641 ± 0.0053 0.1727 ± 0.0043

Score† 34 20 0

† There are a total of 40 comparisons in the Wilcoxon rank-sum test

for each algorithm. Therefore, the full mark of each algorithm is

40.

5.3.3. Hybrid initialization rate

Four solution initialization strategies are considered, with hybrid initialization rates (HR) of 0%, 4%, 50%, and

100%, respectively. The notation -HRn represents the variant of EMT-ad-VFCPSO using the initialization strategy

with HR n ∈ {0%, 4%, 50%, 100%}. Since the particle size is set to 50 with the value of Nemt
p and Nmain

p are both set to

25. The number of solutions with hybrid initialization is 0, 2 (1 for Nemt
p and Nmain

p ), 25 (12 for Nemt
p and 13 for Nmain

p ),465

and 50 (25 for Nemt
p and Nmain

p ), respectively.

Table 7 shows the statistical results of EMT-ad-VFCPSO with different initialization strategies. The data show

the mean value and standard deviation of the algorithms in 20 independent runs, with the best results indicated in

bold. Four algorithms are compared by the Wilcoxon rank-sum test with a significance level of 0.05. The total score

for -HR100 is 8, which is the best among the algorithms. It can be observed that a higher value of HR yields better470

performance than a lower HR. Therefore, it is selected for comparison with the state-of-the-art algorithms.

5.3.4. Particle size for EMT

The value of Nemt
p and Nmain

p control the proportion of simplified CVaR-UACS in EMT. We consider four com-

bination of Nemt
p and Nmain

p with 25/25, 40/10, 10/40, and 0/50, respectively. Note that for 0/50, there is no particle

for simplified CVaR-UACS , which means EMT is not considered. Table 8 shows the statistical results of EMT-ad-475

VFCPSO with different particle sizes for CVaR-UACS and CVaR-UAC. The data show the mean value and standard

deviation of the algorithms in 20 independent runs, with the best results indicated in bold. The results are compared

by the Wilcoxon rank-sum test with a significance level of 0.05. The total score for the combination 25/25 is 26,

which is the best among the combinations. Therefore, the particle sizes for simplified CVaR-UACS and CVaR-UAC

are set to 25.480

21



Table 6: Results of the comparison of EMT-ad-VFCPSO with different parameter c0 on 20 test instances.

Instance c0 = 0.1 c0 = 0.5 c0 = 0.8 c0 = 1.0

S1-0.7 0.5603 ± 0.0010 0.5604 ± 0.0009 0.5603 ± 0.0011 0.5600 ± 0.0006

S2-0.7 0.5269 ± 0.0004 0.5269 ± 0.0003 0.5268 ± 0.0004 0.5268 ± 0.0003

S3-0.7 0.4965 ± 0.0008 0.4962 ± 0.0006 0.4962 ± 0.0005 0.4963 ± 0.0007

S4-0.7 0.4370 ± 0.0008 0.4370 ± 0.0008 0.4373 ± 0.0012 0.4378 ± 0.0009

S5-0.7 0.3729 ± 0.0023 0.3722 ± 0.0022 0.3731 ± 0.0016 0.3731 ± 0.0020

S1-0.8 0.4723 ± 0.0015 0.4715 ± 0.0014 0.4718 ± 0.0013 0.4715 ± 0.0016

S2-0.8 0.4481 ± 0.0009 0.4478 ± 0.0005 0.4483 ± 0.0010 0.4479 ± 0.0012

S3-0.8 0.4319 ± 0.0012 0.4309 ± 0.0012 0.4311 ± 0.0013 0.4312 ± 0.0010

S4-0.8 0.3716 ± 0.0016 0.3712 ± 0.0015 0.3719 ± 0.0016 0.3714 ± 0.0013

S5-0.8 0.2872 ± 0.0021 0.2856 ± 0.0033 0.2881 ± 0.0031 0.2877 ± 0.0028

S1-0.9 0.4077 ± 0.0013 0.4077 ± 0.0013 0.4079 ± 0.0011 0.4078 ± 0.0010

S2-0.9 0.3747 ± 0.0024 0.3753 ± 0.0023 0.3750 ± 0.0018 0.3749 ± 0.0023

S3-0.9 0.3644 ± 0.0013 0.3642 ± 0.0011 0.3649 ± 0.0021 0.3650 ± 0.0016

S4-0.9 0.2933 ± 0.0036 0.2946 ± 0.0022 0.2941 ± 0.0031 0.2922 ± 0.0029

S5-0.9 0.2229 ± 0.0026 0.2226 ± 0.0040 0.2253 ± 0.0047 0.2233 ± 0.0053

S1-1.0 0.3536 ± 0.0027 0.3528 ± 0.0024 0.3526 ± 0.0013 0.3529 ± 0.0020

S2-1.0 0.3117 ± 0.0025 0.3120 ± 0.0026 0.3108 ± 0.0028 0.3118 ± 0.0024

S3-1.0 0.2995 ± 0.0021 0.2992 ± 0.0026 0.3004 ± 0.0029 0.2997 ± 0.0023

S4-1.0 0.2315 ± 0.0026 0.2314 ± 0.0033 0.2325 ± 0.0038 0.2333 ± 0.0039

S5-1.0 0.1583 ± 0.0060 0.1588 ± 0.0045 0.1592 ± 0.0040 0.1606 ± 0.0039

Score† 1 4 0 1

† There are a total of 60 comparisons in the Wilcoxon rank-sum test for each algorithm.

Therefore, the full mark of each algorithm is 60.

5.4. Summary

In summary, the computational results demonstrate that EMT-ad-VFCPSO outperforms other state-of-the-art al-

gorithms. The main reasons are as follows:

• The hybrid initialization method is very effective in obtaining high-quality initial solutions, which significantly

enhances the exploration capability of EMT-ad-VFCPSO.485

• For a large-scale optimization problem, the co-evolutionary manner and multitasking technique are two efficient

approaches. The former employs the divide-and-conquer mechanism to deal with the decision variables, while

the latter constructs simplified problems to make the problem easy to solve. As a result, the diversity of the

solutions obtained during the search process has been significantly improved.

• The velocity update equation in the original PSO no longer uses the former velocity but instead employs per-490

turbations such as Gaussian, Cauchy, and L’evy functions. These perturbations are stochastic functions that

provide more diversity, while using former velocity may lead to an unsatisfying searching direction.

• The disturbance operator adaptively selected from three perturbation operators is better at dealing with the

problem than algorithms using a single perturbation. This is because a particular perturbation may not always

be effective during the evolution.495

6. Conclusion and future work

This paper studies the minimum CVaR-UAC problem, defined as the sensor area coverage problem controlled

by CVaR. To generate the initial population, we develop a hybrid initialization method the integrates random and
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Table 7: Results of the comparison of EMT-ad-VFCPSO with different initialization on 20 test instances.

Instance -HR00 -HR04 -HR50 -HR100

S1-0.7 0.5603 ± 0.0006 0.5605 ± 0.0011 0.5604 ± 0.0008 0.5604 ± 0.0009

S2-0.7 0.5268 ± 0.0003 0.5270 ± 0.0004 0.5270 ± 0.0003 0.5269 ± 0.0003

S3-0.7 0.4964 ± 0.0005 0.4965 ± 0.0006 0.4963 ± 0.0007 0.4962 ± 0.0006

S4-0.7 0.4370 ± 0.0006 0.4373 ± 0.0012 0.4374 ± 0.0008 0.4370 ± 0.0008

S5-0.7 0.3720 ± 0.0026 0.3730 ± 0.0019 0.3732 ± 0.0024 0.3722 ± 0.0022

S1-0.8 0.4727 ± 0.0018 0.4718 ± 0.0018 0.4720 ± 0.0016 0.4715 ± 0.0014

S2-0.8 0.4484 ± 0.0011 0.4484 ± 0.0011 0.4481 ± 0.0011 0.4478 ± 0.0005

S3-0.8 0.4320 ± 0.0016 0.4316 ± 0.0014 0.4314 ± 0.0013 0.4309 ± 0.0012

S4-0.8 0.3721 ± 0.0012 0.3716 ± 0.0018 0.3714 ± 0.0017 0.3712 ± 0.0015

S5-0.8 0.2886 ± 0.0036 0.2877 ± 0.0035 0.2872 ± 0.0031 0.2856 ± 0.0033

S1-0.9 0.4085 ± 0.0011 0.4085 ± 0.0013 0.4080 ± 0.0012 0.4077 ± 0.0013

S2-0.9 0.3762 ± 0.0018 0.3749 ± 0.0018 0.3746 ± 0.0019 0.3753 ± 0.0023

S3-0.9 0.3650 ± 0.0016 0.3648 ± 0.0017 0.3657 ± 0.0020 0.3642 ± 0.0011

S4-0.9 0.2939 ± 0.0034 0.2930 ± 0.0029 0.2933 ± 0.0021 0.2946 ± 0.0022

S5-0.9 0.2237 ± 0.0047 0.2259 ± 0.0040 0.2236 ± 0.0033 0.2226 ± 0.0040

S1-1.0 0.3532 ± 0.0016 0.3535 ± 0.0017 0.3531 ± 0.0018 0.3528 ± 0.0024

S2-1.0 0.3128 ± 0.0022 0.3129 ± 0.0023 0.3126 ± 0.0028 0.3120 ± 0.0026

S3-1.0 0.3002 ± 0.0026 0.3000 ± 0.0044 0.2991 ± 0.0025 0.2992 ± 0.0026

S4-1.0 0.2313 ± 0.0047 0.2326 ± 0.0038 0.2308 ± 0.0032 0.2314 ± 0.0033

S5-1.0 0.1606 ± 0.0057 0.1603 ± 0.0039 0.1596 ± 0.0068 0.1588 ± 0.0045

Score† 0 1 1 8

† There are a total of 60 comparisons in the Wilcoxon rank-sum test for each algorithm.

Therefore, the full mark of each algorithm is 60.

heuristic strategies. We apply an EMT framework to deal with the problem as simplified helper tasks to obtain new

solutions with more diversity. We proposed an efficient PSO based on an adaptive disturbance, a co-evolutionary500

manner, and virtual force. We provide the approximation ratio of the proposed PSO on the minimum D-CVaR-UAC.

The experiment results demonstrate the effectiveness of the proposed algorithms compared with other state-of-the-art

algorithms.

In the future, we will further investigate efficient methods to solve the CVaR-UAC with EMT. This includes

constructing simplified CVaR-UAC problems with other sensor grouping and area partitioning methods, developing505

new knowledge transfer techniques, analyzing new search engines, etc. We also aim to model the problem as a

multi-objective problem [13] and design a corresponding algorithm in a multi-objective optimization framework.

Additionally, we will consider problems that contains uncertain variables without knowing the actual probabilities,

which will be of great interest [9]. The proposed algorithm can also be applied to other real-world applications, e.g.,

deploying unmanned aerial/ground vehicles [10], etc.510
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Table 8: Results of the comparison of EMT-ad-VFCPSO with different particle size for CVaR-UACS and CVaR-UAC on 20 test instances.

Instance
Nemt

p /N
main
p

25/25 40/10 10/40 0/50

S1-0.7 0.5604 ± 0.0009 0.5608 ± 0.0009 0.5602 ± 0.0009 0.5595 ± 0.0004

S2-0.7 0.5269 ± 0.0003 0.5272 ± 0.0004 0.5267 ± 0.0003 0.5270 ± 0.0005

S3-0.7 0.4962 ± 0.0006 0.4973 ± 0.0008 0.4961 ± 0.0004 0.4965 ± 0.0006

S4-0.7 0.4370 ± 0.0008 0.4385 ± 0.0012 0.4370 ± 0.0008 0.4389 ± 0.0013

S5-0.7 0.3722 ± 0.0022 0.3776 ± 0.0029 0.3729 ± 0.0021 0.3792 ± 0.0028

S1-0.8 0.4715 ± 0.0014 0.4727 ± 0.0016 0.4714 ± 0.0010 0.4711 ± 0.0009

S2-0.8 0.4478 ± 0.0005 0.4491 ± 0.0012 0.4481 ± 0.0009 0.4482 ± 0.0010

S3-0.8 0.4309 ± 0.0012 0.4319 ± 0.0012 0.4317 ± 0.0017 0.4319 ± 0.0015

S4-0.8 0.3712 ± 0.0015 0.3739 ± 0.0024 0.3718 ± 0.0020 0.3734 ± 0.0013

S5-0.8 0.2856 ± 0.0033 0.2923 ± 0.0042 0.2900 ± 0.0035 0.3026 ± 0.0034

S1-0.9 0.4077 ± 0.0013 0.4080 ± 0.0008 0.4076 ± 0.0012 0.4084 ± 0.0018

S2-0.9 0.3753 ± 0.0023 0.3765 ± 0.0022 0.3745 ± 0.0016 0.3743 ± 0.0017

S3-0.9 0.3642 ± 0.0011 0.3678 ± 0.0023 0.3637 ± 0.0016 0.3651 ± 0.0019

S4-0.9 0.2946 ± 0.0022 0.2987 ± 0.0025 0.2944 ± 0.0034 0.2996 ± 0.0033

S5-0.9 0.2226 ± 0.0040 0.2317 ± 0.0043 0.2258 ± 0.0048 0.2389 ± 0.0034

S1-1.0 0.3528 ± 0.0024 0.3539 ± 0.0017 0.3539 ± 0.0018 0.3537 ± 0.0022

S2-1.0 0.3120 ± 0.0026 0.3134 ± 0.0030 0.3122 ± 0.0023 0.3128 ± 0.0023

S3-1.0 0.2992 ± 0.0026 0.3019 ± 0.0022 0.2997 ± 0.0027 0.3022 ± 0.0032

S4-1.0 0.2314 ± 0.0033 0.2368 ± 0.0034 0.2306 ± 0.0047 0.2424 ± 0.0055

S5-1.0 0.1588 ± 0.0045 0.1649 ± 0.0049 0.1620 ± 0.0059 0.1880 ± 0.0036

Score† 26 4 25 8

† There are a total of 60 comparisons in the Wilcoxon rank-sum test for each algorithm.

Therefore, the full mark of each algorithm is 60.
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