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This study addresses a high-speed railway train
timetable rescheduling (TTR) problem with a com-
plete blockage at the station and train operation con-
straints. The problem is formulated as a mixed-integer
linear programming (MILP) model that minimizes the
weighted sum of the total delay time of trains. A
memetic algorithm (MA) is proposed, and the individ-
ual of MA is represented as a permutation of trains’
departure order at the disrupted station. The individ-
ual is decoded to a feasible schedule of the trains us-
ing a rule-based method to allocate the running time
in sections and dwell time at stations. Consequently,
the original problem is reformulated as an uncon-
strained problem. Several permutation-based opera-
tors are involved, including crossover, mutation, and
local search. A restart strategy was employed to main-
tain the the population diversity. The proposed MA
was compared with the first-scheduled-first-served
(FSFS) algorithm and other state-of-the-art evolution-
ary algorithms. The experimental results demonstrate
the superiority of MA in solving the TTR through
permutation-based optimization in terms of constraint
handling, solution quality, and computation time.

Keywords: high-speed railway, train timetable
rescheduling, disruptions, memetic algorithm, combina-
torial optimization

1. Introduction

High-speed railway (HSR) plays an important role
in medium-to-long-distance transportation services in
China. HSR operates according to the prescribed
timetable. However, HSR may face inevitable emergen-
cies such as infrastructure failure, train failure, and natu-
ral disasters [1]. The operations of the train may be dis-
turbed or disrupted by delays. Therefore, train timetable
rescheduling (TTR) is required for trains to recover their
regular operation.

Various studies have been conducted on the TTR prob-
lem, which has been proven to be NP-hard [2, 3]. In
most studies, a mixed-integer linear programming (MILP)
model was adopted, and the CPLEX solver was used to
obtain solutions. An MILP model was proposed in [4] to
deal with the real-time rescheduling of a timetable in the
case of a complete blockage in a railway segment. How-
ever, when the scale of the problem increases, using the
CPLEX solver becomes time consuming, which may ex-
ceed the time limit.

Metaheuristics are typically used to solve NP-hard
problems [5]. Near-optimal solutions were obtained
within a limited time. Genetic algorithm-based particle
swarm optimization has been used to reschedule HSR
timetables under primary delays [6]. Meng et al. [7] con-
sidered train rescheduling with track assignment, and pro-
posed an artificial bee colony algorithm to solve this prob-
lem. The departure and arrival times of the trains are used
for the solution representation. However, this may result
in constraint-violated solutions. Few related works have
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considered determining the order of trains to determine
the train timetable. Wang et al. [8] adjusted train depar-
ture sequences based on a Monte Carlo tree search. Wang
and Wang [9] proposed an effective estimation of the dis-
tribution algorithm (EDA) to solve the multi-track train
scheduling problem. The permutation of the train priority
was obtained. Ding et al. [10] used several metaheuris-
tics to solve the TTR problem using permutation-based
combinatorial optimization. However, the proposed meta-
heuristics are not well designed for permutation-based op-
timization problems.

The memetic algorithm (MA) is a population-based
metaheuristic that combines evolutionary algorithms
(EA) and local search techniques [11]. It has been adopted
to solve many complex optimization problems [12–15].
The encoding scheme, genetic operator (i.e., selection,
crossover, and mutation operators), and local search strat-
egy are important for MA performance. Some of these
are specially designed for permutation-based optimization
problems.

The main contributions of this study are summarized
as follows: first, a high-speed railway train timetable
rescheduling problem with a complete station blockage
is proposed and modeled as an MILP problem. Second,
an effective permutation encoding method was proposed
for the TTR problem, and a rule-based decoding method
was designed to obtain a new schedule. These encoding
and decoding methods can manage all the constraints and
guarantee the feasibility of the solution. Subsequently,
an MA is proposed to solve the permutation-based opti-
mization problem with various permutation-based opera-
tors. A local search operator was developed to exploit the
neighborhood of the best current individual, and a restart
strategy was used to maintain the diversity of the popula-
tion. Finally, the experimental results show that the pro-
posed MA can efficiently solve most test instances com-
pared to state-of-the-art algorithms.

The remainder of this paper is organized as follows.
The TTR problem is described in Section 2. Section 3
presents a memetic algorithm for solving the TTR. The
performance of the proposed algorithms is evaluated in
Section 4. Finally, conclusions and future work are pre-
sented in Section 5.

2. Problem Formulation

Punctuality is an important factor in railway operation.
However, in the case of disruptions, the railway system
may fall into disorder. Trains may not be able to arrive or
depart at the stations.

In this section, we introduce the MILP model to for-
mulate the TTR problem. We need to determine the new
arrival and departure times of trains at stations to recover
railway operations.

There are seven assumptions. (1) All trains should
follow their original schedules before disruption occurs.
(2) No trains are canceled in the train timetable reschedul-
ing problem. (3) A macroscopic model was presented

without considering signaling systems and station capac-
ity. (4) The disruption considered was complete blockage
at the first station. All the affected trains departed after the
disruption ended. (5) There is only one disruption with a
known duration. (6) Train reordering is not allowed, ex-
cept for departing trains at the first station. (7) Running
and dwell time supplements were not considered in the
original timetable.

2.1. Indices

i, j: index of the train, i, j ∈ T .
s: index of the station, s ∈ S.

(s,s+1): index of the section between stations s
and s+1, (s,s+1) ∈ K.

s∗: index of the disrupted station, s∗ ∈ S.
O(i) and D(i): index of the origin and destination sta-

tions of train i, respectively.

2.2. Parameters

T : the set of trains.
S: the set of stations.
K: the set of sections.

T a
i,s: arrival time of train i at station s in the original

schedule.
T d

i,s: departure time of train i at station s in the orig-
inal schedule.

di,s: minimum dwell time at station s for train i.
Yi,s: train stop indicator in the original schedule, 1 if

train i stops at station s; 0 otherwise.
rmin

i,(s,s+1): minimum running time at section (s,s+ 1) for
train i.

rs
i,(s,s+1): additional time caused by starting train i in sec-

tion (s,s+1).
re

i,(s,s+1): additional time caused by stopping train i in
section (s,s+1).

h(s,s+1): minimal headway between two consecutive
trains in the same direction in section (s,s+1).

wi: weight value for train i.
M: a large positive number.

Hs
dis: start time of disruption.

Ddis: duration of disruption.

2.3. Decision Variables

ta
i,s: actual arrival time of train i at station s.

td
i,s: actual departure time of train i at station s.

qi, j,(s,s+1): actual traversing order, 1 if train i traverses
section (s,s+1) before train j; 0 otherwise.

yi,s: actual train stop indicator, 1 if train i stops at
station s; 0 otherwise.

2.4. Mathematical Formulation
The optimization model for the TTR problem is an

MILP model, which can be formulated as follows:
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min F = ∑
i∈T

∑
s∈S

wi

(
ta
i,s −T a

i,s + td
i,s −T d

i,s

)
(1)

s.t. td
i,s − ta

i,s ≥ di,s, ∀i ∈ T ;s ∈ S, . . . . . (2)

ta
i,s+1 − td

i,s

≥ rmin
i,(s,s+1) + rs

i,(s,s+1)yi,s+ re
i,(s,s+1)yi,s+1,

∀i ∈ T ;s ∈ S\D(i), . . . . . . . (3)

td
j,s − td

i,s

≥ h(s,s+1)qi, j,(s,s+1)−M
(
1−qi, j,(s,s+1)

)
,

∀i, j ∈ T ; i �= j;s ∈ S\D(i), . . . . (4)
ta

j,s+1 − ta
i,s+1

≥ h(s,s+1)qi, j,(s,s+1)−M
(
1−qi, j,(s,s+1)

)
,

∀i, j ∈ T ; i �= j;s ∈ S\D(i), . . . . (5)
qi, j,(s,s+1) +q j,i,(s,s+1) = 1,

∀i, j ∈ I; i �= j;s ∈ S \D(i), . . . . (6)
ta
i,s = T a

i,s, ∀i ∈ T ;s ∈ S : T a
i,s ≤ Hs

dis, . . (7)

td
i,s = T d

i,s, ∀i ∈ T ;s ∈ S : T d
i,s ≤ Hs

dis, . . (8)
ta
i,s∗ ≥ Hs

dis +Ddis,

∀i ∈ T : Hs
dis ≤ T a

i,s∗ ≤ Hs
dis +Ddis, . (9)

ta
i,O(i) = td

i,O(i), ∀i ∈ T, . . . . . . . . (10)

ta
i,s ≥ T a

i,s, ∀i ∈ T ;s ∈ S, . . . . . . . (11)

td
i,s ≥ T d

i,s, ∀i ∈ T ;s ∈ S, . . . . . . . (12)
qi, j,(O(i),O(i)+1) = qi, j,(s,s+1),

∀i, j ∈ T ; i �= j;s ∈ S\{O(i),D(i)}, . (13)

yi,s ≤ td
i,s − ta

i,s, ∀i ∈ T ;s ∈ S\{O(i),D(i)}, (14)

yi,s ≥
td
i,s − ta

i,s

M
, ∀i ∈ T ;s ∈ S\{O(i),D(i)}, (15)

yi,s ≥ Yi,s, ∀i ∈ T ;s ∈ S\{O(i),D(i)}, . . (16)
yi,s = Yi,s, ∀i ∈ T ;s ∈ {O(i),D(i)}, . . . (17)

ta
i,s, t

d
i,s ≥ 0, ∀i ∈ T ;s ∈ S, . . . . . . (18)

qi, j,(s,s+1) ∈ {0,1},
∀i, j ∈ T ; i �= j;s ∈ S\D(i), . . . . (19)

yi,s ∈ {0,1}, ∀i, j ∈ T ; i �= j;s ∈ S, . . . (20)

where Eq. (1) minimizes the weighted sum of the total de-
lay time, including the delay arrival and departure times of
each train at all stations. Eq. (2) represents the minimum
dwelling time constraint. Eq. (3) represents the minimum
running time constraint. Eqs. (4) and (5) are the headway
constraints for the departure and arrival headways, respec-
tively. Eq. (6) is the traverse-order constraint of two trains
in a section, which means that either train i traverses sec-
tion (s,s+ 1) before train j or later than train j. Eqs. (7)
and (8) guarantee that the arrival and departure times for
the unaffected trains are equal to the original timetable.
Eq. (9) guarantees that no trains arrive at the stations dur-
ing disruption. Eq. (10) indicates that the arrival and de-
parture times are the same at the origin station. Eqs. (11)
and (12) are the timetable constraints that restrict trains
from arriving and departing from stations before their

Algorithm 1 The memetic algorithm for TTR
Input: original timetable information; disruption informa-
tion; set of affected trains Tdis.
Output: the actual arrival time ta

i,s and departure time td
i,s;

the total delay time F .
1: Generate the initial population pop randomly.
2: Set NFE = |pop|.
3: while NFE < MaxFEs do
4: Select parent individuals through roulette wheel

selection.
5: Update pop through modified order crossover.
6: Update pop through swap mutation.
7: Update NFE according to the number of

individuals for mutation.
8: Merge the new populations with the original ones

and obtain the best individuals according to the
population size.

9: Update pop through local search using
Algorithm 3.

10: Update NFE according to the iterations of the
local search.

11: if the number of different individuals in the
population pop is less than the predefined
threshold σ then

12: Regenerate the population pop randomly.
13: NFE = NFE+ |pop|.
14: end if
15: end while
16: Find the best individual p through the evolution pro-

cess in pop and decode it using Algorithm 2.
17: return ta

i,s, td
i,s, and F .

original arrival and departure times, respectively. Eq. (13)
guarantees that the actual traversing orders of all trains are
equal to those in the first section. Eqs. (14)–(17) are the
train stop-indicator constraints. Eqs. (18)–(20) restrict the
decision variables to real and binary numbers.

3. Memetic Algorithm for TTR

Because the TTR problem is NP-hard, there is no
polynomial-time algorithm to obtain an exact solution.
In this section, an MA is presented to solve TTR. First,
encoding and decoding were introduced to transform the
original MILP problem into a permutation-based combi-
natorial optimization problem without constraints. Subse-
quently, the proposed MA randomly generates the initial
population as a set of permutations. The population is
iteratively updated by crossover, mutation, local search,
and restart operators. MA adopts various search method-
ologies, including population-based and local search tech-
niques [11]. The evolutionary process is similar to that of
the genetic algorithm (GA) for population-based searches,
while a local search is developed. When there is no im-
provement in the population, a population restart will be
performed. The MA process is shown in Algorithm 1.
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3.1. Solution Representation
For TTR, most studies used a real-coded encoding

scheme. The arrival and departure times were used as the
solution. However, it is easy to obtain constraint viola-
tions during the evolutionary computation. Suppose that
the traversing order of trains in each section is determined.
In this case, we only need to determine the arrival and de-
parture times that satisfy the operation constraints, for ex-
ample, dwelling time, running time, headway constraints,
etc. In this section, we propose a permutation-based en-
coding method to solve TTR. The problem of determin-
ing the traversing order of trains is unconstrained, which
is easier than the original MILP problem. The integer
number in the solution determines the rescheduling or-
der of trains. For example, a solution p = (1,2,4,3,5)
represents the order of five trains, where train 4 is sched-
uled before train 3. The orders of the other trains re-
mained the same. Before disruption occurs, trains fol-
low their original schedules, and the set of affected trains
Tdis can be determined if the arrival time at the first sta-
tion is after Hs

dis. Therefore, |Tdis| is the dimension of the
permutation-based optimization problem. For the prob-
lem using a real-coded encoding scheme, the dimension
is 2 · |Tdis| · |S|. The dimension of the problem using
a permutation-based encoding scheme has been signifi-
cantly decreased compared with that using a real-coded
encoding scheme. Moreover, the search range for each el-
ement also decreased. It decreased from 1440 (minutes of
one day) to |Tdis| (number of affected trains).

We obtained the actual arrival and departure times
through the decoding procedure shown in Algorithm 2
for a permutation-encoded solution p = (p1, p2, . . . , p|T |).
In addition, the feasibility of the solution decoded
from the permutation can be guaranteed because a
constraint-handling technique is applied during encoding
and decoding. It follows the rule that trains may arrive and
depart at stations once they are allowed as soon as possi-
ble. To better illustrate the constraint-handling process,
some of the constraints are described in Fig. 1. For ex-
ample, the minimum running time constraint determines
the arrival time. The minimum dwelling time constraint
determines the departure time. Headway constraint de-
termines both arrival and departure times. Trains should
depart after disruption ends.

Remark 1: In Algorithm 2, all constraints for the TTR
are satisfied. In line 22, the condition is satisfied when an
additional stop may be added at station s. This may add
to the total running time for the section (s− 1,s) because
of the additional time caused by stopping. Therefore, the
arrival times must be updated. If the arrival time is larger
than the departure time, the stop is canceled, and the ar-
rival time is set to the departure time.

3.2. Selection Operator
The operator used for selection was the roulette wheel

selection. It is typically used in GA. The individuals were
selected according to their fitness values. Because this is
a problem for minimization, the probabilities of the indi-

Algorithm 2 Decoding procedure
Input: original timetable information; disruption infor-
mation; set of affected trains Tdis; scheduling order of
trains p = [pi]1×|T |.
Output: the actual arrival time ta

i,s and departure time td
i,s.

1: for i = 1 to |T |− |Tdis| do
2: for s = O(i) to D(i) do
3: ta

i,s = T a
i,s; td

i,s = T d
i,s.

4: end for
5: end for
6: for i = |T |− |Tdis|+1 to |T | do
7: if i = |T |− |Tdis|+1 then
8: ta

pi,O(pi)
= Hs

dis +Ddis.

9: td
pi,O(pi)

= ta
pi,O(pi)

.
10: else
11: ta

pi,O(pi)
= max

(
ta
pi−1,O(pi−1)

+h(O(pi),O(pi)+1),

T a
pi ,O(pi)

)
.

12: td
pi,O(pi)

= max
(

ta
pi,O(pi)

+dpi,O(pi),T
d
pi ,O(pi)

)
.

13: end if
14: ypi,O(pi) = Ypi,O(pi).
15: for s = O(i)+1 to D(i) do
16: ypi,s = Ypi,s.

17: ta
pi,s = max

(
td
pi,s−1 + rmin

pi,(s−1,s)

+ ypi,s−1rs
pi,(s−1,s) + ypi,sr

e
pi,(s−1,s),T

a
pi ,s

)
.

18: ta
pi,s = max

(
ta
pi,s, t

a
pi−1,s +h(s−1,s)

)
.

19: td
pi,s = max

(
ta
pi,s +dpi,s,T

d
pi ,s

)
.

20: if s < D(pi) then
21: td

pi,s = max
(

td
pi,s, t

d
pi−1,s +h(s,s+1)

)
.

22: if sgn
(
td
pi,s − ta

pi,s
)
> ypi,s then

23: ta
pi,s = min

(
td
pi,s−1 + rmin

pi,(s−1,s)

+ ypi,s−1rs
pi,(s−1,s) + re

pi,(s−1,s), t
d
pi,s

)
.

24: ypi,s = sgn
(
td
pi,s − ta

pi,s
)
.

25: end if
26: end if
27: end for
28: end for
29: return ta

i,s and td
i,s.

viduals are set according to the exponential of the negative
fitness values.

3.3. Crossover Operator
Modified order crossover (MOC) is adopted for the

proposed MA [16]. It is designed for permutation-based
combinatorial optimization problems, such as the travel-
ing salesman problem. The MOC operator randomly se-
lects a crossover point to divide both parent individuals
p1 and p2 into left and right strings of the same length.
Then, the order of the right string p1 is used to change the
order of the positions in p2 and vice versa. Fig. 2 shows
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Station j

Station j+1

Section k

Minimum 
running time 

train i

(a)

Station j

train i Minimum 
dwelling 

time 

(b)

Station j

Station j+1

Section k

Minimal 
headway

train i
train i+1

(c)

Station j

train i

Station 
blockage

(d)

Fig. 1. Determine arrival and departure time in the decoding
procedure. (a) Minimum running time constraints. (b) Min-
imum dwelling time constraints. (c) Headway constraints.
(d) Depart after disruption ends.

75 63 41 2

13 76 25 4

15 67 42 3

13 76 24 5

Child permutationsParent permutations

Fig. 2. Modified order crossover.

an example of MOC. The MOC operator is employed to
produce the offsprings of two parent individuals based on
the crossover rate pc.

3.4. Mutation Operator
The mutation was conducted after the crossover. It

should be mentioned that not all newly obtained individ-
uals were mutated. This is based on the mutation rate pm.
The mutation operator helps to maintain the diversity of
the population by changing some of the individuals in the
current population. The swap operator is chosen for muta-
tion. We randomly selected two positions in an individual
and swapped them to obtain a new permutation.

3.5. Survivor Selection
The survivor selection operator selects the fittest indi-

viduals that remain in the population. Truncation selec-
tion selects the top solutions with population size based
on the objective values.

3.6. Local Search
Local search is an important process in MA that helps

maintain the tradeoff between exploration and explo-
ration. The best individual in the population was used
for the local search. There are L iterations for the local
search. The best individual obtained in the local search

Algorithm 3 Local search
Input: current population pop; best individual pbest ; num-
ber of iterations of local search L; fitness function of the
total delay time F .
Output: updated population pop.

1: for i = 1 to L do
2: Perform swap operator on the best individual pbest

to obtain a new individual p(i).
3: Calculate the objective value F(i) for new

individual p(i).
4: end for
5: Find the best individual p(ibest) based on F(i).
6: Replace the worst one in the current population pop

by p(ibest).
7: return pop.

process replaces the worst individual in the population.
The local search process is shown in Algorithm 3.

3.7. Restart Strategy
During the evolutionary process of MA, the population

converges to similar populations, which significantly de-
creases its diversity. Consequently, it was difficult to gen-
erate new solutions. A restart strategy is employed to re-
duce wasted time and improve the diversity of the pop-
ulation. When the population is updated, the objective
values of the new individuals are calculated. If the num-
ber of different objective values in the new population is
below a predefined threshold σ , the entire population is
reinitialized randomly.

4. Computational Experiments

This section presents an investigation of the perfor-
mance of the proposed algorithms. First, we present the
test instances for the TTR. Then, we solved the problem
using different methods, including exact solutions using
CPLEX. All experiments were carried out on a PC with
an Intel Xeon Gold 5218 CPU 2.30 GHz and 32 GB of
internal memory. Exact solutions for TTR problems were
implemented in MATLAB R2019b using YALMIP as the
modelling language and CPLEX 12.10, with default pa-
rameter settings [17]. Other algorithms for TTR problems
were implemented using MATLAB R2019b.

4.1. Test Instances for TTR
Owing to the lack of benchmark instances with dis-

ruptions for TTR in the literature, we first developed
the test instances. The Beijing–Tianjin intercity railway
timetable from Beijing South to Tianjin was considered
in this study. There are altogether six stations and five
sections. 40 trains downstream from 6:00 to 12:00 hrs are
considered for the railway timetable. The minimum dwell
time for train stops at stations was set to 2 min and there
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Table 1. The minimum running time in each section be-
tween two stations.

No. Section Time [min]
1 Beijing South–Yizhuang 5
2 Yizhuang–Yongle 5
3 Yongle–Wuqin 6
4 Wuqin–Nancang 5
5 Nancang–Tianjin 5

Table 2. Setting of the two basic parameters for the test
instances.

No. |T | Ddis [min] No. |T | Ddis [min]
1, 5 15 30 2, 6 20 50
3, 7 30 70 4, 8 40 90

was no dwell time at the pass-through, origin, and desti-
nation stations. The minimum running times for each sec-
tion are listed in Table 1. The additional times required
for starting and stopping were set to 2 and 3 min, respec-
tively. The minimal headway was set to 4 min. The start
time of the disruption Hs

dis was set to 6:40 hrs. s∗ was
set to 1, which means that disruption occurs at the first
station. M was set to 1440 min.

We categorize the generation of wi into the following
two cases:

Case 1: The weight values wi of the trains are set to 1.

Case 2: The weight values wi of the trains are generated
as uniformly distributed random integers in the
range of 1 to 10.

Eight test instances were produced to validate the per-
formance of the algorithms. The first four instances
(Nos.1–4) were from Case 1, and the last four instances
(Nos.5–8) were from Case 2. The settings of the two ba-
sic parameters, |T | and Ddis, are listed in Table 2. For
instances where the number of trains |T | is less than 40,
for example, instance No.1, the first train is the same train
starting at 6:00 hrs. We did not need to adjust the sched-
ule of all 40 trains when the duration of the disruption was
only 30 min. Consequently, |T | for different instances was
generated according to the duration of the disruption Ddis.

4.2. Algorithms for Comparison
To evaluate the performance of the proposed MA, we

compared the proposed MA with the following six algo-
rithms: first-scheduled-first-served (FSFS), dual-model
estimation of distribution algorithm (DM-EDA) [18],
self-adaptive differential evolution algorithm (SaDE),
comprehensive learning particle swarm optimizer
(CLPSO) [19], covariance matrix adaptation evolution
strategy (CMA-ES) [20], and GA [21]. For the GA,
we apply the roulette wheel selection, modified order

crossover, and swap mutation, which is similar to the
proposed MA without a local search and restart strategy.

Remark 2: Because SaDE, CLPSO, and CMA-ES are
algorithms designed to search in continuous space,
the random key algorithm is applied to transform the
real-valued vector to a permutation. Given a real-valued
vector (3.5,2.4,1.6,0.5,4.1), the permutation obtained is
the ranking of the real-valued vector (4,3,2,1,5). The
range of each element in the real-valued vector is also the
vector dimension.

4.3. Parameter Settings
For all the algorithms, the particle/population size was

set to 10 ·D, where D is the dimension of the search space.
For the DM-EDA, the subpopulation size Nadv is set to D,
which is 10% of the population size. The learning rates,
μn and μe, were both set to 0.2. The predefined thresh-
old, ε , was set to 0.01. For the CLPSO, the acceleration
constant, c, was set to 1.49445. The inertia weight w was
selected to linear decreasing from 0.9 to 0.4. For the GA
and MA, the crossover rates pc were both set to 0.9. The
mutation rates pm were both set to 0.05. For the MA, the
number of local search iterations L was set to 100. The
predefined threshold, σ , was set to 2. Each algorithm was
terminated when the maximum number of fitness evalua-
tions (10000 ·D) was reached (i.e., MaxFEs = 10000 ·D).
The number of independent runs for each algorithm for
each instance was set to 20.

Most of the algorithm parameters were kept the same as
those in the original papers. Additionally, for the CPLEX
solver, the termination time was set to 3600 s.

4.4. Results and Analysis
For the proposed MA, the best settings for the number

of local search iterations L and predefined threshold σ for
the restart strategy are not determined. To analyze the
sensitivity of L and σ , we tested MA in all test instances.
Table 3 shows the results of the MA with different pa-
rameters (L,σ). The mean value and standard deviation
of MA in 20 independent runs are shown in Table 3. In
seven instances (Nos.1–7), the MA performed well with
different parameters. For most parameters, the standard
deviation is zero, which means that the parameters are not
sensitive. For instance No.8, the best results are indicated
in bold. This shows that the number of local search iter-
ations L is set to 100, and the predefined threshold σ for
the restart strategy is set to 2.

Based on the given parameter settings, we compared
the proposed MA with six algorithms and CPLEX. Ta-
ble 4 shows the results of 20 independent runs for each
algorithm, with mean values and standard deviations. The
CPLEX runs only once. The best results are indicated in
bold.

It can be observed from Table 4 that the proposed
MA outperforms the other methods. In seven instances
(Nos.1–7), the results of MA were equal to CPLEX.
Among these instances, the results of MA are proven to
be optimal in instances Nos.1, 2, 5, 6, and 7. Moreover,
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Table 3. Results of MA with different parameters (L,σ).

No. (20,2) (20,3) (20,4) (50,2) (50,3) (50,4) (80,2) (80,3) (80,4) (100,2) (100,3) (100,4)
1 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000 1628.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
2 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000 3874.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
3 7268.8000 7268.8000 7271.2000 7268.0000 7268.0000 7268.0000 7268.0000 7268.0000 7268.0000 7268.0000 7268.0000 7268.0000

(2.4623) (3.5777) (5.4445) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
4 12070.3000 12070.3000 12070.6000 12070.0000 12070.0000 12070.0000 12070.0000 12070.0000 12070.0000 12070.0000 12070.0000 12070.0000

(1.3416) (1.3416) (1.8468) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
5 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000 6126.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
6 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000 14810.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
7 26889.0000 26890.1000 26923.5500 26872.0000 26872.0000 26872.0000 26872.0000 26872.0000 26872.0000 26872.0000 26872.0000 26872.0000

(45.3965) (47.1971) (68.9137) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
8 43156.4000 43161.0000 43228.6000 43124.1000 43125.0000 43129.5000 43123.2000 43136.3000 43123.5000 43122.6000 43128.9000 43122.9000

(47.9104) (58.1088) (93.8714) (2.9362) (10.7508) (15.3125) (2.4623) (56.9516) (2.6656) (1.8468) (28.0936) (2.1981)

Table 4. Results of the comparison on the objective value of different algorithms.

No. FSFS DM-EDA SaDE CLPSO CMA-ES GA MA CPLEX
1 1700.00 1628.00±±±0.00‡ 1628.00±±±0.00‡ 1628.00±±±0.00‡ 1628.00±±±0.00‡ 1628.00±±±0.00‡ 1628.00±±±0.00‡ 1628.00‡

2 3962.00 3874.00±±±0.00‡ 3874.00±±±0.00‡ 3874.00±±±0.00‡ 3874.00±±±0.00‡ 3874.00±±±0.00‡ 3874.00±±±0.00‡ 3874.00‡

3 7616.00 7570.80±34.55 7272.80±7.52 7274.40±7.61 7284.30±0.73 7277.50±8.85 7268.00±±±0.00 7268.00†

4 12554.00 12539.20±55.02 12070.00±±±0.00 12072.10±3.34 12081.70±13.27 12072.60±8.00 12070.00±±±0.00 12070.00†

5 8012.00 6462.00±0.00 6126.00±±±0.00‡ 6126.00±±±0.00‡ 6126.00±±±0.00‡ 6126.00±±±0.00‡ 6126.00±±±0.00‡ 6126.00‡

6 17606.00 15386.00±0.00 14810.00±±±0.00‡ 14810.00±±±0.00‡ 14852.80±87.82 14852.80±87.82 14810.00±±±0.00‡ 14810.00‡

7 35452.00 31475.05±684.50 26874.60±8.00 26875.30±8.32 27177.00±330.65 27038.70±64.42 26872.00±±±0.00‡ 26872.00‡

8 61640.00 59492.10±1055.76 43125.00±10.75 43636.00±157.02 43697.00±599.01 43333.50±253.86 43122.30±±±1.34 43128.00†

† CPLEX stopped after running for one hour.
‡ Optimal value.

for instances Nos.3 and 4, the results of MA are equal to
those of CPLEX (stopped within one hour). In instance
No.8, the result of MA was better than that of CPLEX
(stopped within one hour). Fig. 3 shows the rescheduled
train timetable for instance No.8 obtained by MA with an
objective value of 43122. From Fig. 3, disrupted trains
(dotted lines) with fewer stops are scheduled earlier than
trains that stop at Wuqin.

In instances Nos.1 and 2, all algorithms except for
FSFS converged to the optimal value. This is because the
size of the instance is small, and the algorithms can cover
nearly all feasible solutions. As for the FSFS, the order of
the trains is kept the same, which means that the original
order is not optimal under disruption. SaDE also shows
good performance in several instances, but it is inferior to
that of MA. This is because the SaDE was not designed
for permutation-based optimization. A permutation-based
MA with a local search mechanism and a restart strategy
is highly effective.

Figures 4 and 5 show the convergence curves of the
different algorithms in instances Nos.7 and 8. The curves
were magnified in some areas for better visualization. The
horizontal and vertical axes represent the number of fit-
ness evaluations and mean of the objective function for
20 runs, respectively. It can be observed from Figs. 4 and
5 that MA converges faster than the other algorithms at

the beginning. In addition, both GA and CMA-ES have
a high convergence speed. Finally, the final result of MA
was better than those of the other algorithms.

Table 5 shows the running times of FSFS, EAs, and
CPLEX. The mean values and standard deviations of
20 independent runs for the EAs are shown. The best re-
sults are indicated in bold. The results show that SaDE
requires more computation time in small-scale instances,
whereas DM-EDA requires more computation time in
large-scale instances among the EAs. For FSFS, all in-
stances were solved within 0.01 s. It can be observed that
all the instances can be solved within one minute. How-
ever, the running time for CPLEX increased significantly
with an increase in problem size. For instance No.7, the
total running time is approximately 2862 s, and for in-
stances Nos.3, 4, and 8, the total running time is more
than 3600 s. This result demonstrates the efficiency of
the proposed framework with permutation-based encod-
ing and rule-based decoding methods.

Based on the above performance results, we can see
that the proposed MA successfully solved most of the
test instances for TTR and showed significant advantages
compared with the other algorithms. The main reasons
for this are as follows:
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Fig. 3. Rescheduled train timetable for instance No.8.
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Fig. 4. Convergence curves of different algorithms for in-
stance No.7.

(a) Permutation-based encoding scheme and rule-based
decoding method significantly reduce the complex-
ity of the problem. The encoding scheme signif-
icantly decreases the search space, and the decod-
ing method guarantees the feasibility of the solution.
Therefore, TTR can be solved within a limited com-
putation time.

(b) The proposed MA was designed using a
permutation-based encoding scheme. The se-
lection, crossover, and mutation operators are
designed for permutation-based combinatorial
optimization problems. This makes it more effective
for TTR than other algorithms, especially those for
continuous space with the random key algorithm to
obtain the permutation.
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Fig. 5. Convergence curves of different algorithms for in-
stance No.8.

(c) Local search improves the exploration ability of the
proposed MA, and the restart strategy improves the
diversity of the solution.

5. Conclusion

The high-speed railway TTR problem is formulated as
an MILP problem. An MA was proposed to address this
problem. A novel encoding and decoding method that
transfers the original problem to an unconstrained prob-
lem was specially designed for TTR. This avoids numer-
ous ineffective searches in the solution space. With the
exception of crossover and mutation operators, the local
search strategy and restart strategy are applied to improve
the search ability. Based on the testing in eight instances,
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Table 5. Runtime performance of different algorithms [sec].

No. FSFS DM-EDA SaDE CLPSO CMA-ES GA MA CPLEX
1 0.01 5.74±0.46 8.18±0.65 3.75±0.30 2.24±0.36 4.33±0.20 4.18±0.15 10.39
2 <0.01 10.09±0.69 11.99±0.62 5.57±0.39 3.05±0.27 6.83±0.17 5.89±0.15 64.75
3 <0.01 24.89±0.97 19.91±1.24 11.27±1.80 6.07±1.00 12.98±0.28 11.77±0.24 –
4 <0.01 47.55±1.82 30.01±2.13 17.36±0.65 9.67±0.19 20.46±0.15 19.18±0.38 –
5 0.01 5.12±0.55 8.11±1.17 3.71±0.69 1.88±0.31 4.33±0.13 3.61±0.14 10.55
6 <0.01 10.28±1.29 12.31±2.03 6.06±0.71 2.76±0.12 6.84±0.20 6.05±0.22 30.59
7 <0.01 24.89±0.82 20.10±1.15 11.31±1.33 6.27±1.10 12.87±0.19 11.81±0.20 2861.86
8 <0.01 49.87±3.10 31.19±2.93 17.41±0.82 10.46±1.63 20.55±0.31 19.23±0.31 –

– : CPLEX cannot find optimal value after running for one hour.

the proposed MA outperformed the other algorithms and
demonstrated its efficiency compared with CPLEX. The
results were obtained within one minute, which is suit-
able for real-time rescheduling. In the future, we will
consider situations with more types of trains (e.g., trains
with different prefixes, including G, C, and D) and even
reordering at other stations based on the features of the
timetable. In addition, considering the uncertainties in a
dynamic environment will make the model more practi-
cal [22]. The proposed MA can also be improved using a
constructive heuristic to obtain good solutions for the ini-
tial population [11]. Meanwhile, the multi-objective TTR
problem with more optimization objectives using meta-
heuristics deserves further research [23, 24].
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