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Abstract—In this paper, the uncertain duration of the section
blockade is considered for the high-speed railway train timetable
rescheduling problem with the entire section blockade. The
objective is to minimize the conditional value-at-risk of the
train delay by retiming, reordering, etc. A two-stage stochastic
mixed-integer linear programming model is established for the
train rescheduling problem in a macroscopic view. Some model
approximation methods with scenarios are applied to speed
up the solution process. The proposed models are solved by
the GUROBI commercial solver. Numerical experiments are
performed based on the Beijing-Tianjin intercity railway to show
the effectiveness of the proposed stochastic programming model.
The experimental results showed that the proposed model with
scenario reduction and order scenario reduction could get a high-
quality solution with a shorter computation time.

Index Terms—High-speed railway, train timetable reschedul-
ing, mixed-integer linear programming, stochastic programming,
uncertainty, conditional value-at-risk

I. INTRODUCTION

High-speed railway (HSR) train dispatching and command-

ing is the central part of high-speed train operation. Train

timetable rescheduling (TTR) is conducted when predefined

This work was supported in part by the National Natural Science Foundation
of China under Grants 61790575, U1934220, and in part by the Foundation
of China Academy of Railway Sciences Corporation Limited under Grant
2020YJ001. (Corresponding author: Kang Huang)

train operations are affected by inevitable emergencies, e.g.,

train failure, natural disasters, etc. Disturbances are small

perturbations of the railway system which can be handled by

adjusting the timetable. For large incidents, which are defined

as disruptions, timetable, rolling stock, and crew should be

modified [1]. There are many uncertain features in actual train

operations, which account for an efficient TTR method for

increasing the train operation efficiency.

Most of the studies consider the parameters for the emer-

gencies are deterministic [2], [3]. For studies with uncertain

parameters, Yang et al. [4] proposed a two-stage fuzzy pro-

gramming problem to deal with the uncertain TTR problem.

The recovery time was regarded as a fuzzy uncertain variable,

and the expectation of the train delay time was minimized. Li

et al. [5] considered the stochastic recovery time, minimizing

the delay cost and the expected track changing cost with track-

backup. Meng and Zhou [6] proposed a two-stage stochastic

programming model with a stochastic section running time

and capacity loss duration in a single-track. The objective

was to minimize the arrival time deviation in the final station.

The problem was solved in a scenario-based rolling horizon

framework with branch-and-bound. Yang et al. [7] improved

[4] in a railway network, minimizing the total fuzzy delays

under confidence level α with a two-stage 0-1 integer fuzzy
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programming model. Zhu and Goverde [8] proposed a rolling

horizon two-stage stochastic timetable rescheduling model

to deal with stochastic disruptions, considering retiming, re-

ordering, canceling, adding stops, and flexible short-turning.

Hong et al. [9] proposed a mixed-integer linear programming

(MILP) model with large stochastic disruptions to model the

robust capacitated train rescheduling problem with passenger

reassignment and solved it by a two-stage approach.

Section blockage is a typical disruption, a variety of studies

have analyzed the TTR problem under this condition. Most

of the studies consider that the duration of the blockage is

deterministic. However, the actual value is hard to obtain.

Meanwhile, although some studies consider uncertainty, the

risk is omitted. This paper proposes a scenario-based ap-

proach to model the stochastic disruptions as a stochastic

programming model with conditional value-at-risk (CVaR)

[10]. Linearization, model reformulation, and approximation

methods are developed to decrease the complexity of the

model. Simulation results have demonstrated the effectiveness

of the proposed model, which provides a new approach for

TTR problems under uncertainty.

We summarize our contributions as follows:

1) We present a CVaR-based TTR model under uncertainty

with stochastic disruption scenarios.

2) Model transformation and approximation methods are

applied to speed up the computation and provide an

efficient upper bound.

The rest of this paper is organized as follows. In Section

II, we describe the CVaR-based TTR problem. The proposed

model is evaluated by experiments in Section III. Finally, we

conclude our work in Section IV.

II. PROBLEM FORMULATION

This section introduces a mixed-integer nonlinear program-

ming (MINLP) model to formulate the TTR problem with

stochastic section blockage. This model minimizes the CVaR

of the arrival and departure cost with operational constraints.

A. Assumptions

1) Rolling stock rescheduling and crew rescheduling are

not considered.

2) The upstream and downstream trains are operated sep-

arately on their side of tracks and platforms. We only

need to reschedule on one side.

3) Retiming and reordering are considered, whereas no

trains are canceled in TTR.

4) All the train should follow their original schedules

before disruption happens.

5) Disruption considered is a complete section blockage

between two adjacent stations.

6) There is only one disruption, whose duration is a

stochastic variable with known distribution.

7) For trains already entered the disruption section are

assumed to have passed the blockage in the section.

8) Trains are allowed to arrive early at the station, but they

should not depart early.

TABLE I
SUMMARY OF NOTATIONS.

Symbol Description

Indices

i, l ∈ I Index of train

j ∈ J Index of station

k ∈ K Index of section

s ∈ S Index of scenario

Parameters

I Set of trains

J Set of stations

K Set of sections

csij Unit cost when train i arrives early at station j

esij Unit cost when train i arrives late at station j

eeij Unit cost when train i leaves late at station j

osij The start time of train i at station j in the original schedule

oeij The end time of train i at station j in the original schedule

Yij The train stop indicator in the original schedule, 1 if train i
stops at station j; 0 otherwise

αi The departure station for train i
βi The terminal station for train i
dij The minimum dwell time at station j for train i
rmin
k The minimum running time at section k
rsk The additional time caused by starting at section k
rek The additional time caused by stopping at section k
Hk The minimum headway between two consecutive trains of the

same direction at section k
M A large positive number

S Set of scenarios

Hs
dis Start time of the disruption

Tdis(s) Duration of the disruption for scenario s
k∗ Index of the disrupted section

Decision variables

xs
ij(s) Start time for train i at station j for scenario s

xe
ij(s) End time for train i at station j for scenario s

qilk(s) Traversing order for scenario s, 1 if train i traverses at

section k before train l; 0 otherwise

yij(s) Actual train stop indicator for scenario s, 1 if train i stops

at station j; 0 otherwise

9) The capacity of the station is unlimited.

B. Parameters and Decision Variables

Table I summarizes all the notations that are used through-

out this paper.

C. Objective Function

The total arrival and departure cost for all trains under

scenario s is defined as:

D(x,q,y, s) =
∑
i∈I

βi∑
j=αi

csij [o
s
ij(s)−xs

ij(s)]
++

esij [x
s
ij(s)−osij(s)]

++eeij(x
e
ij(s)−oeij) (1)

where I denotes the set of trains, [t]+ = max{0, t}. x =
[xs

ij(s), x
e
ij(s)]|I|×|J|×|S|, q = [qilk(s)]|I|×|I|×|K|×|S| and

y = [yij(s)]|I|×|J|×|S| are the decision variables.

For S scenarios, the corresponding CVaR value is calculated

by [10]:

CVaRβ(D(x,q,y, s)) =
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min
α∈R

{
α+

1

1− β

∑
s∈S

ps [D(x,q,y, s)− α]
+

}
(2)

where ps is the probability of scenario s, α ∈ R denotes

an auxiliary variable, which is the value-at-risk (VaR) after

optimization. The confidence level of CVaR is described as

β ∈ [0, 1], which measures the risk preference of the decision-

maker (DM). The confidence level β determines the number of

scenarios used for calculation. S denotes the set of scenarios.

Remark 1: When β = 0, the DM is risk-neutral, and the

CVaR operator is equivalent to the expectation operator. When

β = 1, the DM is risk-averse, and the CVaR operator is

equivalent to the maximum operator. Only the scenario with

the maximum D(x,q,y, s) is used for calculation.

D. Constraints

Several constraints for train operations are described as

follows.

1) Dwell Time Constraints: The dwell time at station j
is larger than the minimal dwell time interval to ensure the

operations at the station, e.g., passenger unloading and loading,

crew rescheduling, etc.

xe
ij(s)−xs

ij(s) ≥ dij ∀i ∈ I; j ∈ {αi, . . . , βi}; s ∈ S (3)

2) Running Time Constraints: The running time in section

k should be greater than the minimum running time.

xs
i,j+1(s)−xe

ij(s) ≥ rmin
k + rskyij(s) + rekyi,j+1(s) (4)

for all i ∈ I , j ∈ {αi, . . . , βi − 1}, k = j, s ∈ S.

3) Headway Constraints: The headway between two adja-

cent trains should be greater than the minimum headway to

ensure safety. The trains are assumed with constant speed at

sections. Therefore, we need to ensure that the headway is

satisfied at the start time and end time in stations.

xe
lj(s)−xe

ij(s) ≥ Hkqilk(s)−M(1− qilk(s)) (5)

xs
l,j+1(s)−xs

i,j+1(s) ≥ Hkqilk(s)−M(1− qilk(s)) (6)

for all i, l ∈ I , i �= l, j ∈ {αi∨αl, . . . , βi∧βl − 1}, k = j,

s ∈ S.

4) Close-to-Favorite-Schedule Constraints: All the trains

should follow their favorite timetable before the disruption

happens.

xs
ij(s) = osij ∀i ∈ I; j ∈ {αi, . . . , βi}; s ∈ S :osij ≤Hs

dis (7)

xe
ij(s) = oeij ∀i ∈ I; j ∈ {αi, . . . , βi}; s ∈ S :osij ≤Hs

dis (8)

5) Initial Rescheduling Time Constraints: The affected

trains should leave the station before the disrupted section after

the disruption ends.

xe
ik∗(s) ≥ Hs

dis + Tdis(s) (9)

for all i ∈ I , s ∈ S where Hs
dis ≤ oeij ≤ Hs

dis + Tdis(s).
6) Arrival Time Constraints: Trains are not allowed to

depart earlier than the originally scheduled time to prevent

passengers from missing trains.

xe
ij(s) ≥ oeij ∀i ∈ I; j ∈ {αi, . . . , βi}; s ∈ S (10)

7) Traversing Order Constraints: For two adjacent trains,

either one can traverse at a section before the other.

qilk(s)+qlik(s) = 1 (11)

for all i, l ∈ I , i �= l, j ∈ {αi∨αl, . . . , βi∧βl − 1}, s ∈ S.

qilk∗(s = 1) = · · · = qilk∗(s = S) ∀i, l ∈ I; i �= l (12)

where qilk∗(s) denotes the traversing order for trains at the

disruption section, which is a first-stage decision variable. It

means the value remains the same under different scenarios,

which is a here-and-now type problem, as shown in (12).

In the second stage, the rescheduled arrival, departure time,

traversing order in other sections, and train stop indicator are

decided under each realized disruption time in the scenario.

It is a wait-and-see type problem, where decisions are made

when the random quantities can be observed.

8) Train Stop Constraints: Adding stops is allowed for

trains, whereas canceling stops is not allowed.

yij(s)≤xe
ij(s)−xs

ij(s) ∀i∈I; j ∈ {αi, . . . , βi}; s ∈ S (13)

yij(s)≥
xe
ij(s)−xs

ij(s)

M
∀i∈I; j ∈ {αi, . . . , βi}; s ∈ S (14)

yij(s)≥Yij ∀i∈I; j ∈ {αi + 1, . . . , βi − 1}; s ∈ S (15)

yij(s)=Yij ∀i∈I; j ∈ {αi, βi}; s ∈ S (16)

9) Decision Variable Constraints: The following con-

straints define the domain of the decision variables:

xs
ij(s), x

e
ij(s) ≥ 0 ∀i ∈ I; j ∈ {αi, . . . , βi}; s ∈ S (17)

qilk(s) ∈ {0, 1} ∀i, l ∈ I; i �= l; j ∈ {αi∨αl, . . . , βi∧βl − 1};
k=j; s ∈ S (18)

yij(s) ∈ {0, 1} ∀i ∈ I; j ∈ {αi, . . . , βi}; s ∈ S (19)

E. CVaR-based TTR model

The CVaR-based TTR model is formulated to minimize the

CVaR of the rescheduling cost (2) under several constraints,

that is: {
min CVaRβ(D(x,q,y, s))

s.t. Constraints (3) − (19).
(20)

Since there are continuous real variables x, 0-1 variables

(q,y), and nonlinear terms (minimax function) in (2), the

proposed CVaR-based TTR model (20) belongs to MINLP.

F. Model Reformulation

Linearization should be applied to deal with the proposed

MINLP. Besides, several model reformulations are proposed,

including scenario reduction and order scenario reduction,

which can efficiently deal with the model.
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1) Linearization: Due to the nonlinear terms (minimax

function) in (2), linearization method is developed. Three

auxiliary variables are introduced, i.e., f1 = [f ij
1 (s)]|I|×|J|×|S|,

f2 = [f ij
2 (s)]|I|×|J|×|S|, and f3 = [f3(s)]1×|S|, which are

defined as follows:⎧⎪⎨⎪⎩
f ij
1 (s) = osij − xs

ij(s)

f ij
2 (s) = xs

ij(s)− osij
f3(s) = D(x,q,y, s)− α

∀i ∈ I; j ∈ {αi, . . . , βi}; s ∈ S

(21)

Substituting (1) and (2) by (21), a reformulated MILP model

is obtained. The CVaR-based TTR model (CVaR-TTR) can be

reformulated as follows:

min α+
1

1− β

∑
s∈S

psf
3(s) (22)

s.t. f ij
1 (s) ≥ osij − xs

ij(s) (23)

f ij
2 (s) ≥ xs

ij(s)− osij (24)

f3(s) ≥
∑
i∈I

βi∑
j=αi

(
csijf

ij
1 (s) + esijf

ij
2 (s)

+eeij(x
e
ij(s)− oeij)

)
− α (25)

f ij
1 (s), f ij

2 (s), f3(s), α ≥ 0 (26)

Constraints (3) − (19). (27)

for all i ∈ I , j ∈ {αi, . . . , βi}, s ∈ S.

2) Scenario Reduction: According Remark 1, all the sce-

narios are used for calculation when β = 0. When β is greater

than 0, the corresponding scenarios related with β are used for

calculation, rather than all the scenarios. Therefore, a scenario

reduction strategy is proposed to speed up the model according

to this problem-specific knowledge. A reformulated model

called the CVaR-based TTR model with scenario reduction

(CVaR-TTR-SR) is proposed.

If the probability ps varies under different scenario s, the

following lemmas can be used to obtain the reduced scenarios.

Lemma 1: For CVaR-TTR, the searching space decreases

if the duration of the disruption increases with a given train

traversing order in the disrupted section.

Proof: With a longer duration of the disruption, there will

be less possible arrival and departure time for the rescheduling

of disrupted trains. �
Lemma 2: For CVaR-TTR, the total arrival and departure

cost for scenario s will have an increasing tendency if the

duration of the disruption for scenario s increases with a given

train traversing order in the disrupted section.

Proof: Based on Lemma 1, since the searching space

decreases with the increase in the duration of the disruption,

some optimal solutions may violate the constraints, which lead

to the increase of the objective value of CVaR-TTR. �
Lemma 3: For Tdis(s = 1) ≤ · · · ≤ Tdis(s = S), the

cumulative probability pc(s) for each scenario is calculated.

Then, the number of scenarios is reduced to Sreduce, which

is calculated by the number of scenarios with cumulative

probability greater than the confidence level β, Sreduce =

∑
s∈S sgn(pc(s) − β). The reduced scenarios are those with

least duration of the disrupiton.

Proof: According to the definition of CVaR, which is

calculated by averaging the value for scenarios greater than the

value with confidence level β. The scenarios with a cumulative

probability pc(s) greater than β are remained. �
Lemma 4: If the probability for different scenario s equals

to 1/S, the number of scenarios is reduced to Sreduce = �S ·
(1−β) . The remaining scenarios are the top Sreduce scenarios

with the longest duration of the disruption.

Proof: Lemma 4 is a special condition of Lemma 3 with

the same ps. If n/S > β and (n−1)/S < β (n ∈ {1, . . . S}),

then Sreduce = S − n+ 1 < S − S · β + 1 = S · (1− β) + 1
and Sreduce = S−n+1 > S−S ·β = S · (1−β). Therefore,

Sreduce = �S · (1−β) . If n/S = β, then Sreduce = S−n =
S − S · β = S · (1− β). �

Lemma 1–4 show how CVaR-TTR can be solved by CVaR-

TTR-SR with a smaller searching space.

3) Order Scenario Reduction: Another scenario reduction

strategy (order scenario reduction) is proposed by eliminating

the second-stage decision variable, traversing order q, under

different scenarios to a first-stage decision variable. The re-

formulated model is a CVaR-based TTR model with scenario-

order-free (CVaR-TTR-SOF). As a result, the traversing order

is not related to scenarios. As the searching space is decreased,

the CVaR-TTR-SOF provides an upper bound for CVaR-TTR.

Suppose both the scenario reduction strategy and order

scenario reduction are considered. In that case, a reformulated

CVaR-based TTR model with scenario reduction and scenario-

order-free (CVaR-TTR-SR-SOF) is proposed. It provides the

same upper bound for CVaR-TTR with a smaller searching

space.

III. COMPUTATIONAL EXPERIMENTS

The reformulated MILP models for CVaR-TTR are solved

by the commercial solver GUROBI 9.0.3, implemented in

MATLAB R2018b using YALMIP as the modeling language

with default parameter settings [11]. All experiments were

carried out on a PC with an Intel Core i5-8265U CPU 1.60GHz

and 8 GB internal memory.

A. Test Instances and Parameter Settings

The Beijing-–Tianjin intercity railway line from Beijing

South to Tianjin is considered. It is a double-track railway.

There are altogether 6 stations and 5 sections. 23 trains

downstream from 6:00 to 9:00 are considered for the railway

timetable, shown in Fig. 1. Some trains are heading to another

railway corridor at Nancang. To distinguish trains in the

timetable, the line width of trains is set differently.

The minimum running time of each section is shown in

Table II. The additional times caused by starting and stopping

are set to 2 min and 3 min, respectively. The dwell time for

trains at stations is set based on the original timetable. It is set

to 2 min for train stops at stations and no dwell time for pass-

through stations, the origin stations, and destination stations.

Other parameters are shown in Table III.
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06:00 07:00 08:00 09:00 10:00
Tianjin

Nancang

Wuqin

Yongle

Yizhuang

Beijing South

Fig. 1. Original timetable for Beijing–Tianjin intercity railway with 23
downstream trains within 3-h time horizon.

TABLE II
THE MINIMUM RUNNING TIME AT SECTIONS.

No. Section Time/min
1 Beijing South - Yizhuang 5
2 Yizhuang - Yongle 5
3 Yongle - Wuqin 6
4 Wuqin - Nancang 5
5 Nancang - Tianjin 5

TABLE III
PARAMETERS SETTINGS.

Parameters Values
|I| 23
|J | 6
|K| 5
csij 0.5

esij 1

eeij 1

αi 1
βi 5 (Train No. 3, 4, 13, 20); 6 otherwise
Hk 4 min
|S| 5

Two test instances are generated based on the time, place,

and duration of the disruption as follows:

Instance No. 1: There is a section blockage at Yizhuang –

Yongle, beginning from 6: 40. There are five scenarios for the

duration of the disruption, which are 28 min, 29 min, 30 min,

31 min, and 33 min, with the same probability ps = 0.2.

Instance No. 2: There is a section blockage at Yongle –

Wuqin, beginning from 7: 30. There are five scenarios for the

duration of the disruption, which are 24 min, 25 min, 26 min,

31 min, and 33 min, with the same probability ps = 0.2.

B. Sensitivity Analysis for M

Since M is used in big-M constraints, i.e., headway con-

straints and train stop constraints, it should be greater than the

headway between two adjacent trains when entering/leaving

the station or the dwell time for one train. Therefore, M
should be greater than 3 hours (180 min) with the duration

of the disruption. To analyze the sensitivity of M , we test the

CVaR-TTR-SR-SOF model on instance No. 1 with β = 0.6
with one run. The analysis result is shown in Table IV. From

the table, we can conclude that M = 500 is suitable.

TABLE IV
PARAMETERS SETTINGS FOR M .

M /min 250 500 1000 2000 5000 10000 100000
Time/s 22.88 14.1 16.42 21.63 38.24 22.56 24.08

TABLE V
RESULTS FOR DIFFERENT MODELS (OBJECTIVE VALUE/RUNNING TIME

(S)).

No. β CVaR-TTR -SOF -SR-SOF

1 0 933.60† 933.60/58.62 –

0.2 970.25† 970.25/89.96 970.25/49.51
0.4 1011.33† 1011.33/103.06 1011.33/46.34
0.6 1060.00† 1041.50/95.51 1041.50/15.27
0.8 1092.00/126.23 1092.00/101.48 1092.00/12.95

2 0 644.80/193.85 644.80/11.50 –
0.2 681.75/75.34 681.75/10.99 681.75/9.75
0.4 731.68/118.54 731.68/16.44 731.68/12.18
0.6 806.50/102.09 810.00/28.97 810.00/8.04
0.8 855.00/36.43 855.00/37.76 855.00/7.29

†
GUROBI stopped after running for 10 min.

– The scenario reduction strategy is not applied for β = 0.

C. Result Analysis

The time limit for GUROBI is set to 10 min for TTR. Table

V shows the objective value and running time for CVaR-

TTR, CVaR-TTR-SOF (-SOF), and CVaR-TTR-SR-SOF (-

SR-SOF) under two test instances. According to the table,

the upper bound models (-SOF and -SR-SOF) can provide

results efficiently with less time than CVaR-TTR. Meanwhile,

the objective values for -SR-SOF are the same as those of

-SR, and the running time decreases with the increase of

the confidence level β. It is because the number of effective

scenarios decreases with the increase of β. By reducing the

number of scenarios, the number of variables and constraints

in the model have been significantly reduced.

For instance No. 1, the CVaR-TTR model cannot be solved

within 10 min when 0 ≤ β ≤ 0.6. The corresponding -SR

and SR-SOF models can be solved within 1–2 min for all

instances. For instance No. 2, there is a difference between

the upper bound model and the original model when β = 0.6.

It shows that the traversing orders at undisrupted sections

vary with different scenarios. The rescheduled timetables for

instance No. 2 with β = 0.6 are shown in Figs. 2–5 with red

lines for adjusted arrival and departure times. The objective

value of the -SR-SOF model is 0.43% worse than that of

CVaR-TTR, whereas the running time is 12.7 times better,

which shows the effectiveness of -SR-SOF.

IV. CONCLUSION

This paper analyses the TTR problem in HSR with an uncer-

tain duration of the section disruption. A two-stage stochastic

programming model is proposed to minimize the CVaR of the

total arrival and departure cost as a MINLP model. The model

is linearized to a MILP model and effectively transformed into

several models, including reducing the number of scenarios

and traversing order scenarios. Computational experiments
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Fig. 2. Rescheduled timetable by CVaR-TTR with a duration of disruption
equals 31 min when β = 0.6 for instance No. 2.

Fig. 3. Rescheduled timetable by CVaR-TTR with a duration of disruption
equals 33 min when β = 0.6 for instance No. 2.

Fig. 4. Rescheduled timetable by CVaR-TTR-SR-SOF with a duration of
disruption equals 31 min when β = 0.6 for instance No. 2.

Fig. 5. Rescheduled timetable by CVaR-TTR-SR-SOF with a duration of
disruption equals 33 min when β = 0.6 for instance No. 2.

demonstrate that the CVaR-TTR problem can be efficiently

solved with optimal solutions and a few upper bound solutions.

In the future, new exact, heuristic, metaheuristic, rein-

forcement learning algorithms, and new reformulation can

be applied to solve CVaR-TTR [12], [13]. The uncertain

model can also be analyzed in other ways, e.g., preference

information of DMs [14]. Besides, the multi-objective CVaR-

TTR problem with more optimization objectives also needs

further investigation [15].
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