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Abstract: Today, the ever-changing environment and complex combat missions create new demands for the forma-

tion of mission groups of unmanned combat agents. This study aims to address the problem of dynamic construction

of mission groups under new requirements. Agents are heterogeneous, and a group formation method must dy-

namically form new groups in circumstances where missions are constantly being explored. In our method, a group

formation strategy that combines heuristic rules and response threshold models is proposed to dynamically adjust the

members of the mission group and adapt to the needs of new missions. The degree of matching between the mission

requirements and the group’s capabilities, and the communication cost of group formation are used as indicators to

evaluate the quality of the group. The response threshold method and the ant colony algorithm were selected as

the comparison algorithm in the experiment. The results show that the grouping scheme obtained by the proposed

method is superior to the comparison method.
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1 Introduction

Today, multi-agent systems (MAS) are widely

used to perform complex missions in different fields

(Merabet et al., 2014), such as fire control and rescue

missions or military detection and strike missions.

The first problem to be solved in those missions is

how to organize multiple agents to complete a mis-

sion, that is, how to assign the overall missions to

each agent and ensure that the agents effectively co-
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operate. Group formation has a great influence on

the ultimate performance of the whole MAS.

When agents have different abilities or play dif-

ferent roles, it is particularly important to form

their groups according to the needs of the mission.

The problem of finding a partition of agents set in

groups so that some utility functions are maximized

is known to be NP-hard concerning different util-

ity functions (Gerkey and Matarić, 2004; Vig and

Adams, 2006). In the field of artificial intelligence

and cooperative systems, especially in distributed

collaboration, experts and scholars have done a lot

of research on the organizational structure and syn-

ergy of multi-agent systems. They have focused on

topics such as emergent rule theory (Murphey and
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Pardalos, 2002), game theory (Pardalos et al., 2008),

cooperative autonomous systems (Kim Y et al., 2008;

Pardalos et al., 2013; Khoshnoud et al., 2019), and

the hierarchical cooperation model (Butenko et al.,

2003; Hirsch et al., 2009).

Many scholars have studied the self-organization

or dynamic grouping of agents. Research results in

the context of confrontation are rich, and Ducatelle

et al. (2010), Singh et al. (2010), Liu et al. (2013),

Necsulescu and Schilling (2015), Orfanus et al.

(2016) and Skorobogatov et al. (2020) are all based

on this premise.

In terms of solutions, in addition to the clas-

sic models and the methods described above, some

heuristic rules have also been used in the formation

of agents groups and their mission allocation. Ram-

churn et al. (2010) and Padmanabhan and Suresh

(2015) focus on solving the mission group formation

problem by heuristic method, and Oh et al. (2018),

Nejad and Kashan (2019), and Guo et al. (2020) de-

signed heuristic methods to deal with the mission

allocation problem.

However, as the size of the agent community ex-

pands, the versatility of some heuristic methods be-

comes limited and they no longer apply to more com-

plex mission environments. In this case, people turn

to the individual behavior of the natural commu-

nity and its emerging group behavior and apply it to

the agent system so that the individuals can sponta-

neously form groups to perform complex missions ac-

cording to dynamic mission information. In this pro-

cess, agents demonstrate greater self-organization,

collaboration, and adaptability to the environment.

For example, in Yang et al. (2014) and Khan et al.

(2019), a special ant colony algorithm is used to solve

the problem of constructing an intelligent dynamic

alliance. In addition to the ant colony optimization

(ACO), other bio-population-based heuristics have

also been used in group formation problems. In

Manathara et al. (2011) and George et al. (2010),

the particle swarm algorithm and some new heuris-

tic strategies are used to solve the problem of group

formation.

As the scale of the task group formation problem

continues to change, researchers have tried different

methods to solve it. These existing methods have rel-

atively good results when dealing with the dynamic

grouping of a single type of agent. However, with

the expanded number of agent types, the existing

methods can no longer perform the task of group

formation based on the mission requirement for het-

erogeneous agents. Therefore, in this study, different

from the existing results, the matching of heteroge-

neous agents’ capabilities with mission requirements

and new evaluation criteria are specifically consid-

ered in the grouping process.

This study aims to solve the mission group for-

mation problem of heterogeneous agents in the bat-

tlefield environment. Each mission has different

priority and capability requirements, and different

agents must interact cooperatively. The ability re-

quirement represents the minimum ability required

to destroy the target. The purpose of the mission

is to find the targets and eliminate them as soon as

possible.

Fig. 1 briefly describes the process of collabora-

tive mission execution by heterogeneous agents. In

the left module, there are many different types of

agents that need to form mission groups to perform

missions 1 and 2. When new missions are dis-covered

(missions 3 and 4), agents must adjust the grouping

pattern according to the new mission status, form a

new topology structure, and adapt to the new mis-

sion requirements (as shown in the right-hand side of

Fig. 1). An algorithm needs to be designed to achieve

dynamic grouping. In the algorithm, heuristic rules

and the response threshold method are combined to

form a hybrid grouping strategy, which ensures the

realization of the above process.

When agents perform missions in the form of

a group, this group must exist in the form of a

mobile network that can maintain information ex-

change among members of the group. However, ex-

cessive traffic will increase the network burden and

the probability of the agent being detected by the en-

emy. To avoid the undesirable consequences caused

by too much information transmission, unnecessary

Mission 3

Mission 4

Mission 1

Mission 2

Mission 3

Mission 4

Unknown
Group 3

Group 4

Group 1

Group 2

Formation Reorganization

Fig. 1 Formation and reconstruction of mission

groups
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communication should be reduced when designing

the heuristic rules for grouping.

The main contributions of this study can be

summarized as follows. First, a model was been

established to describe the attributes of the mis-

sion and the agent, and the grouping scheme evalua-

tion method was given. Second, a hybrid algorithm

combining heuristic rules and the improved response

threshold method was designed to solve the dynamic

agent grouping problem proposed in this study.

2 Problem formulation

Our research focuses on the dynamic group

formation problem, which involves heterogeneous

agents with amission to attack some enemy targets.

In the actual grouping process, a unified model is

needed to accurately describe the status of the mis-

sion and the behavior and capabilities of the agents.

The model contains a mission area G, which

is a rectangular, two-dimensional plane. In t area

G, there are q enemy targets (including stationary

and moving targets) to be eliminated, and their ini-

tial positions are completely random. Each target is

treated as a separate mission. Also, we deployed p

freely movable agents in the area to detect and strike

targets. Because each mission requires agents with

various capabilities to collaborate, different types

of agents must be grouped to accomplish the mis-

sion. When the mission situation changed based on

the original grouping, the agents would reform their

group according to the new mission list. The agents

need to eliminate enemy targets as much as possible.

2.1 Agents

1. Definitions

First, we give the following definitions of the

agents used in this study:

(1) Each agent is a carrier of resource capabili-

ties and a mission platform with certain autonomous

capabilities.

(2) There are different types of agents with dif-

ferent capabilities.

(3) The number of agents is limited and it is not

possible to perform all missions at the same time.

(4) Networking overhead will be generated when

agents form new mission groups.

2. Types and topology

This study adopts two types of agents: the de-

tection agent and the attack agent. The detection

agents mainly conduct large-scale reconnaissance op-

erations, discover new targets, and provide real-time

updates of mission intelligence. The updated data

serves as the basis for the current attack agent group-

ing. As the name implies, the attack agents mainly

attack the enemy target. The dynamic grouping

method of these agents based on mission intelligence

is our main research content. The attack agents can

be divided into several types, because they have dif-

ferent capabilities to tackle various types of targets.

Thus, we have to design a rational grouping method

based on different types of agents to improve the

efficiency of mission execution.

In the process of forming a mission group, a

mobile network topology is built among agents, and

is used for information exchange between individu-

als. The hierarchical network concept is introduced

into the system, and we achieve a three-dimensional

topology through hierarchical modeling.

All the agents involved in the mission formed a

hierarchical topology structure as shown in Fig. 2,

which consists of two layers. The lower layer is the

mission execution layer and contains mission groups

composed of attacking agents; the upper layer is

the coordination layer, which contains only detection

agents. In actual combat, a communication link is

formed between the detection agent and the leader

of the mission group. In addition to exploring the

mission location and posting mission information,

the detection agents also need to coordinate among

the mission groups when the mission is released. If

each mission group is regarded as a small network,

the detection agent can be understood as a mobile

gateway node that is used for communication and

coordination between networks.

Coordination layer

(detection)

Executive layer

(attack)

Fig. 2 Hierarchical topology

3. Capabilities

The agents’ capabilities are described by a
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simple slot model, which has been used by re-

searchers in the area of resource collection (Moritz

and Middendorf, 2015). In these models, a slot is

the smallest relevant unit of the agents’ capabilities.

As Fig. 3 shows, slots of different colors repre-

sent the different agent capabilities. The number of

slot types represents the number of capabilities the

agent has. The different slot colors represent the

capability level. There are three capability slots in

Fig. 3. This indicates that the agent has three dif-

ferent capabilities. The capability values for each

capability are shown on the right, and pij represents

the jth capability in agent i. When pij > 0, it means

that agent i has the jth capability. In the prob-

lem we studied, the number of agent capability slots

is different, and the value of each capability is also

different.

Capability 1

Capability 2

Capability 3

C1 C2 C2 C3 C3 C3

Fig. 3 Slot model

4. Constraints

Ignoring the impact of the environment, we as-

sume that all agents can reach any location in the

mission area. Thus, constraints on path feasibil-

ity were not considered in this study. In addition,

regarding the characteristics of the agent itself, we

considered two types of constraints in our research.

Each agent has an energy storage device. When

the energy in the device is exhausted, the agent will

not be able to move or participate in any mission

group, and it will take some time to replenish the

energy. We chose to use the maximum distance,

Lmax, that the agent could move to indicate the

maximum capacity of the battery or fuel tank. Let

Eimax = Limax; Emax represents the maximum en-

ergy. Thus, the energy currently available on agent

Eic can be expressed as:

Eic = fchEimax − Lim, (1)

where Lim indicates the mileage of agent i; fch rep-

resents the number of charges.

In the actual confrontation process, the amount

of ammunition carried by the agent is limited, so

in addition to energy constraints, ammunition con-

straints also should be considered. We translated the

ammunition constraints into the number of missions

in which the agent could participate. Let ami indi-

cate the remaining number of times that agent i can

participate in the mission. When

{

Eic > 0,

ami > 0,
(2)

agent i is in a state that can be grouped.

2.2 Mission

The characteristics of the agent and the mis-

sion scenario were introduced above. Next, some

attributes of the mission are introduced.

In the combat environment of this study, there

are multiple missions at the same time, and each

mission is independent. Due to the limited capabil-

ities of the agents, when attacking enemy targets,

they need to form groups to complete the mission.

Because our study focused on the dynamic grouping

mechanism of heterogeneous agents, we ignore the

impact of the environment on its movement.

To improve the model’s versatility, the mission

settings need to be as close as possible to the ac-

tual situation. During the simulation, the positions

of some targets are unknown and need to be ob-

tained through exploration. The continuous updat-

ing of the missions list ensures the dynamic nature of

the grouping process. In addition, some targets are

removable, which improves the authenticity of the

model. Moreover, the mission should be completed

within a specified time, and when the time limit is

exceeded, the mission is considered to have failed.

1. Mission characteristics

(1) Mission duration. The time elapsed from

the generation of the mission to the announcement

of the failure of the mission is denoted by td.

(2) Mission requirements for capabilities. Here,

the capability requirement vector was used to rep-

resent a mission for each capability requirement.

For a specific mission, the capability requirements

matched the types of capabilities that all intelligent

agents had, that is, the dimension of the vector is

the same as the agent’s slot type. The vector of

capability requirements can be expressed as

unedited
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Dk = [dk1, dk2, . . . , dkp, . . . , dkn], (3)

where dkp represents the demand for the pth capabil-

ity of the mission k, and n is the type of capability.

(3) The time required for mission k to complete

is expressed as tck. The sum of each ability require-

ment of the mission is positively correlated with the

number of agents dispatched to perform this mission,

so we fix the value of tck, which does not change with

the needs of the mission.

Fig. 4 shows the basic mission flow. When the

missions are not completed, the mission group needs

to be reconstructed according to the new mission

requirements until all missions are completed.

Start

Yes

End

No

Mission

accomplished Mission execution

Group formation

Mission updatingMission searchingDeparture

Fig. 4 Basic mission flow

2. Constraints

We assume that there is a mission k and a cor-

responding mission group i, then the relationship

between k and i meet the following condition:

∀ 1 ≤ j ≤ n, ∃ dkj ≤ Cap(pij), (4)

where j represents a certain ability and Cap(pij) rep-

resents the sum of the ability j in group i. This

condition ensures that the mission can be executed

smoothly.

2.3 The proposed model

(1) Objective 1: mission rewards (R(M))

In the process of forming a group, the sum of the

capabilities of the members in the group is required

to be greater than the mission’s demand for capabil-

ities. According to the matching idea, certain prin-

ciples should be satisfied for each mission group: the

higher the degree of matching between the mission

group’s capabilities and the needs of the mission, the

greater the benefit of mission completion (Shehory

and Kraus, 1998). This is because, in ensuring the

completion of the mission, if a mission group is used

whose ability far exceeds the mission demand, the

agent’s capability resources will be wasted and the

overall profit of the mission will be reduced. This

section measures mission rewards R(M) using the

degree of ability matching. According to the above

ideas, we give the numerical calculation method of

R(M) based on the matching degree:

R(M) =

n
∑

k=1

PkrMk, (5)

where R(M) represents the overall mission rewards,

Pk represents the priority of mission k, rMk repre-

sents the rewards of mission k based on the match-

ing degree, and the calculation method of rMk is as

follows:

rMk =

{

bk − nek, accomplished,

0, failed,
(6)

bk = γ

n
∑

j=1

dkj , (7)

nek =
OkD

T
rk

∑n

j=1 Drkj

, (8)

where bk represents the ideal reward of mission k,

that is, the benefits generated when the sum of the

capabilities of the members of the group is exactly

the same as the mission’s capability needs, bk is

measured by the sum of the mission Dk capability

requirements.

According to the relationship between the re-

ward and the matching degree mentioned above,

when the capabilities cannot be fully matched, the

negative rewardnek generated by the redundant part

of the capabilities needs to be subtracted from bk.

Eq. (8) is used to calculate the negative reward nek,

where Ok represents the redundant part of the capa-

bility. This can be calculated by:

Ok = CapCapCap(pi)−Dk. (9)

Drk is a vector consisting of the reciprocal of each

element in Dk, and
D

T

rk∑
n
j=1

Drkj
is used as the weight

coefficient of Ok to measure the impact of each ca-

pability’s overflow on the reward. When the mission

is completed, the specific mission reward can be cal-

culated; otherwise, rMk = 0.

(2) Objective 2: fuel cost (F (M))

In addition to the mission rewards, we also have

to calculate the cost of the missions. F (M) repre-

sents the fuel cost generated during the movement

unedited
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of all agents and is described by the average moving

distance of the agent. It can be calculated by:

F (M) =

∑p

i=1 Lim

p
, (10)

where Lim indicates the mileage of agent i. p is the

number of agents.

(3) Objective 3: networking overhead (E(M))

In addition, in the process of mission execution,

periodic data interaction between individuals must

be guaranteed by each mission group. In the group-

ing algorithm, we can only influence the communica-

tion data that is generated and the energy consumed

during the networking process. In this section, we

use energy consumption E(M) as a parameter to

measure the communication overhead and its impact

when networking. The larger the value of E(M), the

greater the communication volume and energy con-

sumed during networking, and the greater the cost

of the mission.

To ensure stable data interaction during the

mission, we chose a fixed distribution type, time di-

vision multiple access (TDMA) as the method for

nodes to access the network. We do not study the

access protocol and data structure; we only calculate

the energy that is consumed in sending application

data when the node uses the TDMA protocol to ac-

cess the network. The following formula gives the

calculation method:

Eipbit =

Nsi
∑

j=1

[

(Pct + Pcr) /ζRs + Tdnt

tj

]

. (11)

Eq. (11) is given by Cui et al. (2004) and Jiang

et al. (2010), and it is used to calculate the energy

consumption of nodes transmitting data. Eipbit is

the energy consumed by node i to the leader per 1-

bit of data transmission; Nsi is the hop number from

node i to the group leader; Pct and Pcr are transmit-

ting circuit power and receiving circuit power respec-

tively; ζ represents modulation parameters; Rs is bit

rate; under the condition of point-to-point transmis-

sion, T can be regarded as a constant, and depends

on the modulation form, circuit compensation, an-

tenna power gain and other parameters; and dtj rep-

resents the transmission distance from node j to the

next node in the transmission link.

Under the conditions in this study, except for dtj
and Nsi, the remaining parameters can be regarded

as constants, and the values are given by Jiang et al.

(2010).

For all missions, the total energy consumption

during the networking process is:

E(M) =

Ne
∑

i=1

SiEipbit, (12)

where Ne is the number of times that all nodes are

connected to the network, and Si represents the total

amount of application data sent by node i.

Based on the above description, the model is

formulated as follows:







max R(M),

min F (M),

min E(M),

s.t. (2) and (4).

We give three objectives in terms of mission re-

wards and mission costs. The decision variables in-

clude the sum of the capabilities of the mission group

CapCapCap(p), the transmission distance dt, the number of

nodes applying to the network Ne, and the agent’s

mileage Lm. The value of the above decision vari-

ables depends only on the grouping scheme.

3 Dynamic group formation method
based on utility function and heuristic
rules

In the previous grouping method, the mission

team was immediately disbanded after complet-

ing the mission, and then the decentralized agents

formed a new group according to the mission re-

quirements.

Unlike previous research, we introduced a “dy-

namic adjustment” mechanism in the mission group

restructuring strategy. Once the mission is com-

pleted, team members will be adjusted to meet the

new mission needs by combining, absorbing new

agents, group splitting, and other operations, in-

stead of being disbanded immediately. Individuals

in the group share member and mission information,

and each group moves and performs the mission as a

whole.

3.1 Utility function

Before grouping, we designed the utility func-

tion to measure the matching degree between the

unedited
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agent and the mission. The higher the value of the

utility function, the more suitable the agent is to

complete the mission. We use the calculation results

as the basis for dynamic grouping.

When determining the utility function, we con-

sidered the following factors:

1. Urgency of the mission k, defined as follows:

urk =
1

td − tek
. (13)

2. Euclidean distance. The distance dik from

the agent to the mission k is also an important fac-

tor that affects whether the agent is suitable for per-

forming the mission.

dik =

√

(xi − xk)
2
+ (yi − yk)

2
, (14)

(xi, yi) and (xk, yk) are the coordinates of agent i

and mission k.

3. The evaluation value confik represents the

evaluation given by the agent i on the mission k,

which can be defined as follows:

confik = e−(t−tfk), (15)

where t represents the current moment, and tfk is the

moment when mission j was discovered. The greater

the value of confik, the higher the probability that

the agent believes that mission k can be completed.

Based on the above three factors, the utility

function of agent i for mission k could be expressed

as:

uik =
α · urk + confik · β

dik
, (16)

where α and β are the weight coefficients of each

parameter, respectively.

Eq. (16) can be used to calculate the utility value

of each agent for mission i. For group j, the aver-

age utility value ūjk can be calculated to determine

whether group j is suitable for performing mission k.

ūjk =

∑nj

i=1 uik

nj

, (17)

where nj represents the number of agents in group

j.

3.2 Heuristic rules for dynamic group

formation

Next, a networking-overhead-basedconstructive

heuristic (NCH) self-organizing rule is introduced.

When designing the heuristic rules, we considered

the network overhead and tried to maintain the orig-

inal group staffing during the formation of the new

mission group, to reduce the communication over-

head when networking.

We use mlist to save the missions that need to be

executed currently, that is, a list of missions. |mlist|

represents the number of missions in mlist.

Step 1: sort current missions in mlist based on

urgency.

Step 2: for 1 < k < |mlist|.

Based on the latest mission information

recorded by the detection agent, determine the ca-

pability demand vector Dk of each mission.

Determine the capability requirements Dk of

each mission in mlist, the form of Dk is given by

Eq. (3).

Step 3: for 1 < k < |mlist|.

According to the existing grouping situation,

the currently idle mission groups are counted to form

oglist. The number of groups in oglist is represented

by |oglist|.

Step 4: for 1 < j < |oglist|.

Select groups in order in oglist, and calculate the

average utility value ūjk of each group for mission k

according to Eq. (17).

Step 5: sort the groups in oglist according to

the value of ūjk from high to low, and save the new

group order in glist. The number of groups in glist

is represented by |glist|, |glist| = |oglist|.

Step 6: let groupk be the group used to per-

form mission k. Based on the needs of mission k,

we will select the appropriate members in glist to

join groupk to perform mission k. The purpose of

this step is to select multiple individuals that are

most suitable for performing mission k to form a

group while maintaining the original mission group

as much as possible.

For 1 < j < |glist|: when selecting members

to form the mission k group, we will compare the

capabilities of groups 1 to |glist| with the demand

Dk of k in the order of glist. According to whether

Eq. (4) is satisfied, it is divided into the following

two cases:

(a) If the relationship between the capabilities

of group j and mission k does not satisfy Eq. (4),

it means that group j does not meet the current

needs Dk. Let all members of group j join groupk.

The difference between the capabilities of j and k is

unedited
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calculated as the new Dk. Then return to Step 6,

j = j + 1.

(b) Conversely, if Eq. (4) is satisfied, it means

that group j meets the current needs of mission k. At

this time, if all the members of j join groupk, some

individual capabilities may be wasted. Therefore,

we need to combine the improved response thresh-

old method to select suitable individuals from j to

join groupk and avoid wasting agents. The improved

threshold model comes from (Kim MH et al., 2014):

P (Suk, θuk) =
S2
uk

S2
uk + aθ2uk +∆τ2buk

, (18)

where Suk represents the mission’s stimulus for agent

u, θuk is the threshold, τuk represents the time re-

quired for the agent u to reach the position of mission

k, and a and b are parameters. The lower an agent’s

threshold or the higher a mission’s stimulus, the more

likely it was for the agent to accept the mission.

Mission k has different stimulus for different

agents, which can be calculated by:

Suk = max {Dk} · Cap (puv) , (19)

Cap (puv) is the vth capability of agent u, and its

type is the same as the type of capability most needed

by mission k. If max {Dk} = dkn, then v = n and

Cap (puv) = Cap (pun).

We let the agent choose mission k with proba-

bility P (Suk, θuk) every second. After each selection,

let the individuals who choose k join groupk. There

are also two cases at this time. When the relation-

ship between groupk and Dk satisfies constraint (4),

the grouping of mission k is completed. Otherwise,

Dk and Suk need to be updated. Repeat the above

operation until groupk and k meet constraint (4). Af-

ter obtaining groupk, the remaining agents in group

j form a new group j and continue to participate

in the grouping of subsequent missions. After each

simulation step tsp, the agent that responds to the

mission is selected. If the responding agent is insuf-

ficient this time, subtract the sum of the capabilities

of the responding agent from the current mission de-

mand to get the new mission demand, update Sik,

and continue to respond at the next simulation step:

Through the above operations, we incorporated

the response threshold method into the heuristic

framework, and effectively solved the problem of

screening agents.

Step 7: repeat steps 4–6, until one of the follow-

ing two conditions occurs, terminating the grouping

process:

(a) All missions in the current mission list are

performed by a certain group.

(b) When forming a group for mission k in the

list, the remaining idle agents are not enough to per-

form that mission.

When situation (b) occurs, to save time, the

remaining idle agents go to the vicinity of mission k

and stand by.

In addition, all agents participating in the

grouping must satisfy constraint (2).

During the grouping process, some of the orig-

inal connections will be disconnected, and new con-

nections will be formed at the new mission. When

choosing a leader for a new group, we try to choose

the original leader included in the group, so that the

connection between the leader and the surrounding

nodes can be maintained.

Through the above method, the dynamic agent

grouping problem can be solved. After the forma-

tion of the mission group, when the agent moves to

the vicinity of the mission, if its distance from the

leader or the nodes around the leader is less than the

communication radius, it can send an application to

join the network. We stipulate that the informa-

tion transmission link from the member to the group

leader should not exceed 2 hops at most.

4 Experiments

After designing and describing the model and

the dynamic agent self-organizing method, we con-

ducted a series of simulation experiments based on

the self-organizing method designed in the study. We

wanted to determine the algorithm’s performance us-

ing different scales and different scenarios through

experimentation.

The comparison algorithm selects the response

threshold method introduced from Kim MH et al.

(2014), and the adjusted ACO is based on the model

in this study.

Adjusted ACO: generally speaking, the ant

colony algorithm is used to set up the population in

the mission environment and spread the pheromone

along the way through the ants. In the problem of

this study, the pheromone needs to be set at the mis-

sion position to attract the agent to execute. The

unedited
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concentration of the pheromone of the kth mission is

represented by τk, and the probability that agent i

chooses mission k can be calculated as follows:

Pik =
(τk)

αd

∑q

s=1(τs)
αd

. (20)

After a round of selection, if the needs of mission k

are met, set τk to zero; otherwise update τk accord-

ing to the following formula and continue to attract

agents.

τk = τk +∆τ, (21)

∆τ is the concentration of increased pheromone.

4.1 Settings

Based on the problems studied in this study,

we designed four sets of experiments to compare the

application of the algorithm with different mission

numbers. Tables 1 and 2 show the different values

used for the test runs for all model parameters. The

parameter values in Table 1 can be adjusted in the

simulation, and the parameter values in Table 2 are

derived from Cui et al. (2004) and Jiang et al. (2010).

From these tables, we can see the specific parameter

settings when we perform four sets of missions of

different sizes in the same mission area.

In the simulation, we used one type of detection

agent and three attack agent types. The parameters

of the four agent types are given in Table 3. Some

values in Table 3 refer to the relevant parameters

of actual weapons and equipment. Table 4 sets the

parameters of the algorithm for comparison. For the

two comparison algorithms, we selected parameters

that can get better simulation results.

Simulation scenario: Fig. 5 shows the simula-

tion scenario. The small squares represent the en-

emy deployment units, which were randomly gener-

ated in the mission area as the simulation advanced.

The large circle indicates the detection agent and

its detection range. After the simulation started,

the detection agent looped through the mission area

to update the mission information. The remaining

three symbols, which are triangles, asterisks, and

small circles, represent three types of attack agents

that performed strikes based on the grouping results

from the edge of the mission area.

4.2 Results

By simulating the four mission scenarios, we can

compare the running results of the dynamic group

formation strategy under different mission numbers.

In the following simulation results, the blue

line represents the result of the dynamic group-

ing method (NCH) designed in this study, the red

line represents the result of the response threshold

method (RTM), and the yellow line represents the

result of the ant colony algorithm (ACO). We con-

ducted 20 simulations on the four mission scenarios

given in Table 1 respectively.

Figs. 6–9 respectively show the simulation re-

sults obtained under four different mission scenarios,

figure parts (a), (b), and (c) represent the results of

three objectives under different algorithms. We per-

formed simulations on missions of different sizes, and

the results show that the NCH method is superior to

the comparison algorithm in all three objectives, and

as the number of missions increases, the performance

Table 1 Variable parameters in the experiment

Parameter Definition
Scenarios

1 2 3 4

G Mission area (km2) 100*100 100*100 100*100 100*100

q Number of enemy units 10 25 35 50

- Enemy location Random Random Random Random

- Type of agent 4 4 4 4

- Type of Capability 3 3 3 3

δk Importance of mission k Random Random Random Random

tsp Simulation step 1 1 1 1

tck Time required to complete the mission 5 5 5 5

td Mission duration 20 20 25 30

tr Replenishing time 2 2 2 2

α Weight coefficient 10 10 10 10

β Weight coefficient 5 5 5 5

γ Weight coefficient 0.6 0.6 0.6 0.6

unedited
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of the NCH improves. Figs. 8 and 9 clearly reflect

the advantages of the NCH compared to the other

two comparison algorithms when the number of mis-

sions is large.

Moreover, figure parts (d), (e), and (f) are box

plots of three objectives, which represent the mean

value and fluctuation range of different objectives un-

der different methods. Through the box plot, simula-

tion and comparison results can be more intuitively

reflected. As the box plots show, compared with

the comparison algorithm, when the NCH is used to

dynamically form the mission group, the average of

Table 2 Fixed parameters in the experiment*

Parameter Definition Value

Pct Transmitting circuit power 98.2 mW

Pcr Receiving circuit power 112.5 mW

ζ Modulation parameters 1

T Constant 10−18

Rs Bit rate 10
4 symbol/s

nt Constant 3

Si Weight coefficient 20 bit
∗ Taken from Cui et al. (2004) and Jiang et al. (2010)

the three objectives is better. However, the advan-

tages of the NCH are not obvious in terms of the

volatility of the solution results, which means that

in terms of stability, our method (NCH) has room
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Fig. 5 Simulation scenario
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overhead; (d) mission rewards; (e) average distance; (f) communication overhead

Table 3 Parameters of agents

Agents Velocity Fuel Ammunition Anti-air Ground attack Maneuverability Quantity

Type1 300 km/h 8000 – – – 10 2

Type2 100 km/h 800 16 3 4 4 8

Type3 60 km/h 400 40 1 5 2 12

Type4 70 km/h 400 12 5 2 3 10

Table 4 Parameters of the algorithm to be compared

Algorithm Parameter Definition Value

ACO αd Heuristic factor 1.5

∆τ Pheromone increment 0.2

RTM Θmax Maximum threshold 40

(Kim MH et al., 2014) a Weight coefficient 2

b Weight coefficient 1.5

for improvement.

Table 5 shows specific grouping statistics of sce-

nario 1. Through the grouping statistical results,

it can be intuitively understood that because the

heuristic rules of the NCH method consider the en-

ergy consumption factor, the original group mem-

ber structure can be maintained as much as possible

when the method is used for dynamic grouping. On

the contrary, the membership of the mission group of

the two comparison algorithms is more random. The

comparison can prove the effectiveness of heuristic

rules and the NCH algorithm.

In terms of the algorithm characteristics, the

use of the NCH method is based on the layered dis-

tributed system designed in this study. The imple-

mentation of heuristic rules also depends on some

simple decisions made by the detection agent (gate-

way node), such as sorting groups according to the

utility value. Therefore, the NCH is not completely a

distributed algorithm, but combines some features of

a centralized algorithm. The comparison algorithms

ACO and RTM are distributed algorithms, which
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Table 5 Statistics of grouping results (Scenario 1)

Statistics of grouping results

T=10 s T=20 s T=30 s

Mission Agents Mission Agents Mission Agents

NCH 2 3,4,5,27,28,29,30 1 10,11,12,28 3 2,17,18,19,20,22,26

4 2,17,18,19,20,26 7 1,13,14,15 10 3,4,5,23,24,25

5 1,13,14,15,16 8 16,21

6 21,22,23,24,25 9 6,7,8,9

ACO 2 2,4,5,18,26,28,29 1 7,10,12,13,21 7 1,6,7,8,13

4 3,7,17,19,20,27 3 9,11,18,19,26,27,30 9 5,10,14,15

5 1,11,14,23,25,30 8 17,22,29 10 3,4,9,20,24,28

6 6,15,16,22,24,26

RTM 2 1,4,13,24,27,28,30 1 11,12,16,23 7 1,12,13,17,18

4 2,5,7,17,19,21,25 3 2,14,18,19,20,22,26 8 11,15,23

5 3,14,15,16,18 9 6,7,8,9,17

6 6,20,22,23,26,29 10 3,4,5,10,13,24,25
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Fig. 8 The number of missions is 35 (scenario 3): (a) mission rewards; (b) average distance; (c) communication

overhead; (d) mission rewards; (e) average distance; (f) communication overhead

can completely realize the dynamic self-organization

of agents without relying on superior nodes. In this

respect, the performance of the NCH is worse than

those algorithms. In other words, the NCH has cer-

tain advantages in solving the problems in this paper,

but under other conditions, the performance of the

NCH may not be as good.

5 Conclusion and future work

The purpose of our research is to design a heuris-

tic mission group formation approach with some self-
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Fig. 9 The number of missions is 50 (scenario 4): (a) mission rewards; (b) average distance; (c) communication

overhead; (d) mission rewards; (e) average distance; (f) communication overhead

organizing characteristics based on the dynamic mis-

sion requirements. In the actual battlefield, frequent

transmission of data may cause nodes to be detected,

or consume too much energy and lose communication

ability for a period of time. We designed a series of

heuristic rules to preserve the original group’s orga-

nization as much as possible when forming a new

group. This strategy effectively reduces the traf-

fic generated by related steps by reducing the dis-

connection and reconstruction operations of links

between nodes. In addition, based on the ability

matching principle, we have also made adjustments

to the existing self-organizing algorithm and reduced

the wasting of agent capabilities during the grouping

process. The adjusted self-organizing algorithm and

heuristic rules together form the mission group dy-

namic formation algorithm described in this study.

In the simulation, we designed a mission sce-

nario where heterogeneous agents search and attack

enemy targets. Three objectives show that the NCH

method has advantages in solving this problem.

In future work, more complex problems will be

considered. In actual combat, when different types

of ammunition are carried, the capabilities of each

agent will need to be reconfigurable. Also, the actual

mission environment may contain many obstacles or

unknown factors, which will affect the movement of

agents and their group formation. Therefore, in the

next step, we will study the dynamic grouping of

agents based on the above new requirements and

constraints.

In terms of applying the method, the dy-

namic self-organizing method studied in this study

can be applied in the field of combat, and to

the grouping problem of other kinds of missions.

In future work, we will transform the model

and consider the characteristics of other agents to

expand the application area of the proposed method.
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