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Abstract
The disaster information collection mission should be executed after the disaster occurs to provide details for the decision-
makers. During the execution of the information collectionmission, some disruptionsmay occur and prevent the resource used
for information collection from completing themission as planned. It is difficult for decision-makers to make reactive resource
scheduling plan that optimize the mission’s execution time, quality, and cost at the same time under such circumstances. This
article focuses on designing the reactive decision support algorithm for the disaster information collection resource scheduling,
which aims to providemulti high-quality scheduling plans for decision-makers to choose. The problem studied in this article is
modeled as an extension of Resource-Constrained Project Scheduling Problem (RCPSP). First, the basic problem formulation
for a normal schedule and two disruption recovery models are presented. Second, a novel framework of a parallel pareto local
search based on decomposition is designed to repair the schedule within the time limit. Third, two solution acceptance
criteria based on constraint handling and negative correlation are specially designed to maintain high-quality population
with diversity. The experiments show that the proposed method outperforms the other competitors with respect to Inverted
Generational Distance, Spacing, and Hypervolume, which means that the proposed method can help decision-makers to make
better decisions.

Keywords Reactive decision support · Parallel · Pareto local search · Information collection · RCPSP

Introduction

Disasters have caused huge losses to human beings. Many
scholars have studied different disaster relief issues [1–4] to
reduce losses and save lives. At present, decision-makers can
make better decisions through decision support technology in
many fields; such as ship trajectory cleansing and prediction
[5], maintenance strategies making [6], bank telemarketing
sales prediction [7], vehicle routing [8], and smart grid man-
agement [9]. The disaster information collection resource
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scheduling decision supportmodule plays a vital role inmod-
ern disaster relief command and control systems, which aims
to present high-quality resource allocation plans to decision-
makers.A disaster information collectionmission has several
tasks with precedence relations. The precedence relations
restrict that one task cannot be started if at least one of its
predecessor tasks is not finished. This is because there are
many hidden dangers, such as fire and chemical leakage after
the disaster, so the precedence relations are built based on
the geographic accessibility of each task to ensure the safety
of the information collection agents. Each information col-
lection task needs some skill provided by the information
collection agent. The agent represents a teamwith fewer than
5 people, which is the smallest unit for resource schedul-
ing. The team can own vehicles, laser radars, UAVs, ranging
instruments, and other equipment. The information collec-
tion in this article includes three types of tasks: urban area
information collection, woodland area information collec-
tion, and terrain information collection. Because each type
of task corresponds to different working modes of agents
and uses different sensor combinations, this article models
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the ability of agents to perform tasks as skill 1–3. Each infor-
mation collection agent has a pre-defined quality value and
a cost value that correspond to each task. An example of
an information collection mission in disaster relief scenario
is presented in Fig. 1. During the execution of the infor-
mation collection mission, some unpredictable events may
occur and prevent the information collection mission to be
processed with the original schedule. Since the information
collection agents are performing tasks in the area of interest
when the disruption occurs, according to the requirements
of the disaster relief decision support systems, the reactive
scheduling time needs to be controlled within 60s. The reac-
tive scheduling of disaster information collection repairs the
original schedule, which helps the decision-maker to answer
the following questions: (1) each task’s start time; (2) the
information collection agents which are assigned to the task;
(3) which kind of skill that each agent should use in each task.
Three objectives are optimized at the same time, minimize
the makespan, minimize the cost, and maximize the quality
of the information collection mission.

The disaster information collection resource scheduling
problem is modeled as an extension of resource-constrained
project schedulingproblem (RCPSP).RCPSP focus onbuild-
ing a resource allocation result for a commercial project
of activities, which are constrained by a limited resource
supply and the precedence relation network [10]. The infor-
mation collection mission is just as the “project” in RCPSP,
the “task” corresponds to the “activity” in RCPSP, and the
agent is very similar to the “multi-skill resource” in RCPSP.
The processing time of each activity is assumed to be fixed
in RCPSP, but the information collection task’s processing
time is not fixed. Actually, it is a non-linear function of the
resource allocated to that task. For example, both one agent
or two agents can finish an information collection task, but
the task completion time for two agents is shorter. In RCPSP,
the resource transfer time between activities is usually set to
0. However, the task’s location is different in our problem,
so the resource transfer time must be considered. These new
features increase the difficulty of solving the problem in this
article. Using the traditional RCPSP algorithm to solve the
problem in this article is time-consuming and ineffective.

Some related works are addressed in this part. Tradition
algorithms for solving RCPSP can be divided into three
categories: exact algorithm, heuristic algorithm, and meta-
heuristic algorithm. Some articles [11–13] used the exact
method to solve RCPSP and get the best solution. However,
the exact algorithm is time-consuming and does not fit the
reactive scheduling problem in this article.

Some articles [14–16] developed heuristic methods to
solve RCPSP. Although the heuristic algorithm is really fast,
it cannot deal the multi-objective optimization cases.

Since the problem in this article is a multi-objective
reactive robust optimization problem, the related research

progress of meta-heuristic algorithm for solving RCPSP and
its extensions are introduced below. Lambrechts et al. [17]
focused on the uncertainty in resource availabilities subject
to unforeseen breakdowns, a robust schedulemodel was built
that meets the project deadline and minimizes the schedule
instability, and proactive strategies are proposed to solve the
problem. Chen and Zhang [18] aimed to develop a two-stage
model to obtain a proactive and reactive schedule in resource-
constrained project scheduling problems under uncertainty, a
modified tabu searchwas employed to ensure scheduling pro-
cess execution in reactive phase.Davari andDemeulemeester
[19] proposed to use the selection-based reactions and the
class of buffer-based reactions to deal with the uncertainty
and disruptions in resource-constrained project scheduling
problem. Chakrabortty et al. [20] focused on finding a robust
initial schedule that can protect itself fromany possible future
disruptions or resource breakdowns, and a variable neighbor-
hood search-based heuristic algorithmwas proposed to solve
the problem. The above articles focused on finding a robust
initial schedule, but they are not targeted to deal with reactive
scheduling scenarios.

Some articles focused on the single-objective RCPSP and
its extensions. Deblaere et al. [21] addressed the reactive
multi-mode RCPSP, and they proposed and evaluated sev-
eral dedicated exact reactive scheduling procedures as well
as a tabu search heuristic for repairing a disrupted sched-
ule under the assumption that no activity can be started
before its baseline starting time. Ning et al. [22] constructed
the schedule adjustment cost determined by project reactive
scheduling to manage disruptions caused by the random-
ness of activity duration, a tabu simulated annealing, and
a variable neighborhood tabu search were developed to solve
the problem. Adamu et al. [23] proposed a model called
hybrid-RCPSP to solve reactive project scheduling prob-
lem. Davari and Demeulemeester [24] studied the reactive
resource-constrained project scheduling problem, in which
the approach to get a solution to the problem was a proac-
tive and reactive policy that is a combination of a baseline
schedule and a set of required reactions.Davari andDemeule-
meester [25] addressed the proactive and reactive project
scheduling with stochastic duration, and a dynamic pro-
gramming method was proposed to solve the problem over
different classes of proactive and reactive policies. Wang et
al. [26] studied the reactive strategies in the multi-project
scheduling problem, and a dual population genetic algo-
rithm was designed to solve this problem. The above articles
can deal with the reactive scheduling cases, but they are all
single-objective optimization problem and assume that the
task processing time is fixed. Zheng et al. [27] addressed the
proactive and reactive of resource-constrained project prob-
lem in which activity durations are stochastic variables, and
two reactive scheduling models were proposed to repair the
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Fig. 1 Example of an information collection mission
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Table 1 Differences between the existing research and this article

Article Multi-objective Proactive scheduling Reactive scheduling Varying task processing time Transfer time

[11] ✕ ✕ ✕ ✕ ✕

[12] ✕ ✕ ✕ ✕ ✕

[13] ✕ ✕ ✕ ✕ ✕

[14] ✕ ✕ ✕ ✓ ✓

[15] ✕ ✕ ✕ ✕ ✓

[16] ✕ ✕ ✕ ✕ ✓

[17] ✕ ✓ ✕ ✕ ✕

[18] ✕ ✓ ✕ ✕ ✕

[19] ✕ ✓ ✕ ✕ ✕

[20] ✕ ✓ ✕ ✕ ✕

[21] ✕ ✕ ✓ ✕ ✓

[22] ✕ ✕ ✓ ✓ ✕

[23] ✕ ✕ ✓ ✕ ✕

[24] ✕ ✕ ✓ ✕ ✕

[25] ✕ ✓ ✓ ✕ ✕

[26] ✕ ✕ ✓ ✕ ✕

[27] ✕ ✓ ✓ ✓ ✕

[28] ✓ ✕ ✕ ✓ ✕

[29] ✓ ✕ ✕ ✓ ✕

[30] ✓ ✕ ✕ ✕ ✕

[31] ✓ ✕ ✕ ✕ ✕

[32] ✓ ✕ ✕ ✕ ✕

[33] ✕ ✕ ✕ ✕ ✓

[34] ✕ ✓ ✕ ✕ ✕

This article ✓ ✕ ✓ ✓ ✓

baseline schedules after disruptions. However, it can only
deal with single-objective optimization problems.

Some articles focused on the multi-objective RCPSP and
its extensions. Bagherinejad et al. [28] focused on the multi-
mode multi-objective RCPSP and proposed a hybrid ant
colony and genetic algorithm to solve the problem. Yeganeh
and Zegordi [29] presented a multi-objective optimization
approach for constructing resilient project schedules under
resource constraints to copewith uncertain activity durations.
Li et al. [30] proposed a multi-objective discrete Jaya algo-
rithm to solve the multi-skill multi-objective RCPSP. Zhu
et al. [31] presented an efficient decomposition-based multi-
objective genetic programming hyper-heuristic algorithm to
solve the multi-skill RCPSP with the objectives of minimiz-
ing the project’s makespan and the total resource assignment
cost at the same time. Hosseinian and Baradaran [32] con-
sidered the transfer time in multi-skill RCPSP, and built a
model to optimize the project’s makespan and cost simulta-
neously, and then, amulti-objectivemulti-agent optimization
algorithm is proposed to get feasible schedules. The above
articles dealt with multi-objective RCPSP, but the algorithms

are not optimized for reactive scheduling, and the calculation
time is relatively long.

Some literature focused on designing algorithm strategies.
Chand et al. [33] focused on the resource-constrained project
scheduling problem with resource unavailability and disrup-
tions, and a genetic programming hyper-heuristic that can
automatically evolve the priority heuristic was proposed to
solve the problem. Chakrabortty et al. [34] addressed the
event-based reactive approach to deal with reactive resource-
constrained project scheduling problem, and an enhanced
iterated greedy approach was also proposed to solve the
large-scale problem. RCPSP and its extension can also be
applied in command and control system [35], nuclear labo-
ratory research planning [36], new production development
[37], etc. Table 1 shows the differences and gaps between the
existing research and the research in this article.

Overall, to solve the problem addressed in this article,
the following characteristics should be considered: (1) multi-
objectives for reactive scheduling; (2) the precedence rela-
tions between tasks; (2) using multi-skill resource (agent);
(4) the transfer time is considered; (5) the processing time
of a task is a non-linear function of the resource allocation
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Table 2 The symbols

Symbols Description

i, j Index of tasks, i, j = 0, 1, 2, . . . , N , N + 1

l Index of skill type, l = 1, 2, . . . , LN

k Index of information collection agent, k = 1, 2, . . . , K

t Index of the time step

N The number of non-dummy tasks

m The number of objectives

V = {0, . . . , i, . . . , j, . . . , N + 1} Task set, task 0 and N+1 is start and end task, respectively

V ∗ Incomplete tasks set after the disruption occurs

R = {1, . . . , k, . . . K } Agent or resource set

K The number of agents which can be used

R∗ Agent or resource set after the disruption occurs

L = {1, . . . , l, . . . LN } Set of information collection skills

Pj , P I
j The indirect and direct predecessor of task j

S j , SIj The indirect and direct predecessor of task j

Fj , F∗
j The finish time of task j in the initial and repaired schedule

STj , ST ∗
j The start time of task j in the initial and repaired schedule

L j The skills required by task j

Lk Agent k’s skill capacity

Vk The set of tasks that can use resource k

Al
j The area size in task j that needs skill l to perform

A∗l
j The area size in task j which needs skill l to perform

R j The set of agents that can be used in task j

RAl
j The set of agents that are allocated to task j to perform skill l

rρ
l (t) The total skill consumption of skill l in a given time t within the initial schedule

r∗ρ
l (t) The total skill consumption of skill l in a given time t within the repaired schedule

MRj The maximum number of agents that can be used in task j

Dt The time point when the disruption happens

�i j The time cost for transfer agents from task i to task j

U B The maximum makespan for the information collection mission

T = {0, . . . , t, . . . ,UB} Set of time steps

ESj , LSj Task j’s earliest and latest time to start

p j Task j’s processing time

pmax
j Task j’s maximum processing time

� j The preparation time for the agents which are allocated to task j

ukl The number of skill l that the agent k can provide

ckl The cost for agent k to use skill l per time step

qkl The quality contribution for agent k to use skill l per time step

s′
j The actual start time of task j

s j t (decision variable) Equals 1 if task j is started at time t , 0 otherwise

x jklt (decision variable) Equals 1 if agent k is allocated to task j to perform skill l at time t , 0 otherwise

zi jk (decision variable) Equals 1 if agent k is transferred from task i to task j , 0 otherwise
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Fig. 2 Example of a small
information collection mission
scheduling problem

result. The existing RCPSP related literature did not focus on
the problem addressed in this article and failed to consider
the problem with the above characteristics simultaneously.
The existing algorithms are ineffective and time-consuming
in solving the problems in this article, and cannot be applied
in the decision support system.

To solve the problem better, the above features are all
considered in this article, and a parallel pareto local search
is proposed to solve the multi-objective reactive information
collection mission scheduling problem using the problem-
specific information.

The contribution of this article is threefold: (1) the math-
ematical model of multi-objective information collection
mission reactive scheduling problem under preempt-repeat
and preempt-resume condition is established; (2) a paral-
lel pareto local search framework is designed, in which the
Tchebycheff scalar objective function and Nadir point are
combined to decompose the optimization objectives into
different parallel search process to speed up the reactive
scheduling. (3) Two acceptance criterion based on constraint
handling and negative correlation are proposed, the first
acceptance criterion uses problem-specific information to
guide the search process to better solutions, and the second
acceptance criterion significantly increases the diversity of
the Pareto fronts without compromising solution quality.

Problem formulation

Three objectives are optimized at the same time in this
article: (1) minimizing the information collection mission’s
makespan; (2) minimizing the cost caused by the agent per-
forming information collection tasks; (3) maximizing the
mission’s quality. A task on node graph G = (V , E) is
adopted to represent the precedence relations, in which V
denotes a set of information collection tasks, and E denotes
the precedence between tasks. Some assumptions [4, 35] are
made in this article:

• Task 0 denotes the dummy start task, and task N + 1
denotes the dummy end task.

• Preemption is allowed when disruption occurs.
• Each agent can only contribute one type of the skills it
masters in a task.

• The cost and quality are pre-defined for each agent cor-
responding to each task.

• Only after all the allocated resources are transferred to
the starting point of the task, the task can be started.

Notations

The notations are shown in Table 2.
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Fig. 3 Illustration the solution representation and decoding process
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Table 3 Instance parameters

Name nAct K L NC SF RSS MD

1 30 25 3 2.0 0.75 [0.4, 0.5, 0.5] 3

2 35 30 3 2.0 0.75 [0.5, 0.4, 0.4] 3

3 40 30 3 2.0 0.75 [0.4, 0.4, 0.4] 3

4 45 30 3 2.5 0.75 [0.3, 0.4, 0.4] 4

5 50 30 3 2.5 0.75 [0.3, 0.3, 0.4] 4

6 55 35 3 2.5 0.75 [0.3, 0.4, 0.3] 4

7 60 40 3 3.0 1.0 [0.3, 0.3, 0.3] 5

8 65 40 3 3.0 1.0 [0.4, 0.4, 0.4] 5

9 70 45 3 3.5 1.0 [0.3, 0.4, 0.4] 5

10 75 45 3 3.5 1.0 [0.3, 0.3, 0.4] 6

Table 4 Parameter levels

Algorithm Parameter Parameter level

Level 1 Level 2 Level 3

PPLS W 14 16 18

β 0.95 0.97 0.99

ε 0.30 0.35 0.40

Mn 15 16 17

σi 0.04 0.06 0.08

MOTLA SPo 150 200 250

PCr 0.15 0.25 0.35

PMu 0.02 0.04 0.06

EMOIS SPo 150 200 250

PCr 0.1 0.2 0.3

PMu 0.01 0.03 0.05

MOIWO PS 150 200 250

Initial sigma 0.1 0.2 0.3

Final sigma 0.01 0.03 0.05

S-min 2 3 4

S-max 6 8 10

The bold numbers are represent the optimal value of each experiment

Basic formulation for normal schedules

Basedon themodel presented in [2, 3, 38], the formulation for
normal information collection scheduling problem without
disruptions is given as follows:

f1 = min
LSN+1∑

t=ESN+1

ts(N+1)t , (1)

f2 = min
∑

j∈V

∑

l∈L

∑

k∈R

∑

t∈T
x jklt · ckl · p j , (2)

f3 = min
∑

j∈V

∑

l∈L

∑

k∈R

∑

t∈T

pmax
j

� jklt
, (3)

s.t. p j = max
l∈L j

{
� j + Al

j∑
k∈R

∑
t∈T ukl × x jklt

}
, j ∈ V , (4)

� jklt = max{p j · x jklt · qkl , 10−4},
j ∈ V , l ∈ L, k ∈ R, t ∈ T , (5)

∑

l∈L

∑

k∈R

∑

t∈T
x jklt ≤ MRj , j ∈ V , (6)

LS j∑

t=ESj

s j t = 1 , j ∈ V , (7)

∑

l∈L
x jklt ≤ s jt , k ∈ R, ESj ≤ t ≤ LSj , j ∈ V , (8)

LS j∑

t=ESj

ts j t −
LSi∑

t=ESi

(t + pi )sit − �i j zi jk ≥ 0,

i ∈ V \{n + 1}, j ∈ V \P I
i , k ∈ R, (9)

∑

j∈V

min{LS j ,t}∑

τ=max{ESj ,t−p j+1}

∑

l∈L
x jklτ ≤ 1 , t ∈ T , k ∈ R, (10)

∑

j∈V
zi jk ≤ 1 , i ∈ V , k ∈ Ri ∩ R j , (11)

∑

i∈V \SIj
zi jk ≥

∑

e∈V \P I
j

z jek , j ∈ V \{0}, k ∈ R j , (12)

LS j∑

t=ESj

∑

k∈R

x jklt · ukl ≥ Al
j

pmax
j − � j

,

j ∈ V \{0, n + 1}, l ∈ L, (13)

∑

l∈L

LS j∑

t=ESj

x jklt =
∑

i∈V \{n+1}
zi jk ,

j ∈ V \{0, n + 1}, k ∈ Ri ∩ R j , (14)
s jt ∈ {0, 1} , j ∈ V , t ∈ T , (15)
x jklt ∈ {0, 1} , j ∈ V , k ∈ R, l ∈ L, t ∈ T , (16)

zi jk ∈ {0, 1} , i ∈ V \{0}, j\{SIj }, k ∈ Ri ∩ R j . (17)

Equation (1) is to minimize the makespan of the informa-
tion collection mission. Equation (2) aims to minimize the
cost. Equation (3) is tomaximize themission’s quality, and to
make the optimization direction consistent, this article mini-
mizes the reciprocal of the mission’s quality. Constraints (4)
show the way to calculate the processing time of an informa-
tion collection task when given a specific resource allocation
result. Constraints (5) ensure that the denominator of Eq. (3)
is not equal to zero. The constraints (6) limit the maximum
number of agents allocated to a given task. Constraints (7)
restrict that the task in information collection mission can
be only started to be processed only once. Constraints (8)
make sure that once the agent is allocated to a task, it can
only perform one type of skill in that task. Constraints (9)
make sure that the transfer time and precedence relations
must be respected in resource allocation. Constraints (10)–
(11) restrict that the agent can only perform one task at the
same time. Constraints (12) ensure that if an agent is to be
assigned to another task, the current position of that agent
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should be the direct or indirect predecessor of the corre-
sponding task. Constraints (13) make sure that each task’s
processing is less than its maximum processing according
to the resource allocation result. Constraints (14) show the
relationship between decision variables z and x , which avoid
that the agent is assigned from a predecessor task to a suc-
cessor task. Constraints (15)–(17) define the domain for each
decision variable.

Disruption recoverymodel

Disruptions can be caused by the breakdown of agents,
the incorrect estimations of environment parameters, and
the dangerous situation discovered during the mission. The
disruptions can cause the deterioration of the optimization
objectives. Two types of disruptions recovery conditions are
considered. The symbols are defined in Table 2.

Preempt-repeat condition

In the preempt-repeat condition, the affected tasks should be
processed from their very beginning. The reactive scheduling
will be executed just after the disruption occurs.

Precedence relations: The precedence relation is the same
as Eq. (9).

Start time constraints: Assume the rescheduling is started
immediately after the disruption. The incomplete or affected
tasks must be finished after the disruption

LS j∑

t=Dt

s jt = 1 , j ∈ V ∗. (18)

Skill requirement: The size of the task area and the
agent’s availability may change after the disruption. The skill
requirement must be satisfied in the repaired schedule

LS j∑

t=Dt

∑

k∈R∗
x jklt · ukl ≥ A∗l

j

pmax
j − � j

, j ∈ V ∗, l ∈ L. (19)

Preempt-resume condition

In preempt-resume conditions, the affected task starts from
the portion of work it left before the disruption.

Precedence relations: The precedence relation is the same
as Eq. (9).

Start time constraints: For the task whose start time is ear-
lier than the disruption, it follows constraints (20). For the
task whose start time and finish time are later than the dis-
ruption, it should be started twice, as shown in constraints
(21). s′

j is the actual start time of task j

LS j∑

t=Dt

s jt = 1 , j ∈ V ∗, s′
j > Dt (20)

LS j∑

t=Dt

s jt = 1 , j ∈ V ∗, s′
j < Dt, Fj > Dt . (21)

Skill requirement: Constraints are the same as Eq. (19) for
the task whose start time is earlier than the disruption. For
the task whose start time is earlier than the disruption and
the finish time is later than the disruption, if the skill require-
ment increases, more agents should be allocated to the task
as constraints (22)

LS j∑

t=Dt

∑

k∈R∗
x jklt · ukl ≥ max

{
0,

A∗l
j − Al

j

pmax
j − � j

}
,

j ∈ V∗, l ∈ L, s′
j < Dt, Fj > Dt .

(22)

Parallel pareto local search algorithm

The reactive scheduling of the information collectionmission
is time-critical (less than 60s). Although the multi-objective
meta-heuristic algorithm has stronger global search ability,
given a high-quality initial population in advance and a time
limit, it does not always obtain a better solution than the
local search method. The approximated pareto front before
disruption is the initial population in this article. A parallel
pareto local search framework is designed to deal with the
information collection mission reactive scheduling problem
under two types of disruptions.

Solution representation

A task vector and a resource matrix are combined to rep-
resent the solutions. The task vector is denoted as π =
{π1, π2, . . . , πN }; each element in the task vector takes a
priority value from 0 to 1, which indicates the priority of the
corresponding task. Then, the way to decode a task vector to
a task list that meets the precedence constraints is presented:
all the elements in the task list are rearranged in ascending
order, while the precedence constraints are met, and the posi-
tion of each element represents the index of task, and then, a
feasible task list is obtained. The resource matrix is denoted
as M, which decides the resource allocation result. M is a
K × ∑

j∈V |L j | matrix; each value in M takes value from 0
to 1. The index of row in M denotes the resource index, and
the index of column in M denotes the types of skill required
for each task corresponding to the task list. Assume task i’s
index in task list is i p, then the

∑
j∈{π1...πi p−1}|L j | column

in matrix M represents the agents assigned to task-i to per-
form the first type of skill in |L j |. Given an element in M, if
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Table 5 Performance comparison of IGD in preempt-repeat condition

PPLS EMOIS MOIWO MOTLA

Instance-1 337.289 (19.225) 254.545 (17.818)� 392.454 (45.132)† 290.945 (33.75)�
Instance-2 335.945 (31.579) 347.225 (19.445)≈ 388.568 (41.577)† 305.936 (26.31)�
Instance-3 236.876 (17.055) 253.771 (14.972)† 313.026 (36.624)† 244.106 (22.458)≈
Instance-4 614.829 (70.705) 602.858 (39.789)≈ 640.366 (49.949)≈ 624.096 (52.424)≈
Instance-5 676.131 (66.261) 704.918 (64.852)≈ 818.136 (90.813)† 705.26 (54.305)≈
Instance-6 728.668 (82.34) 841.264 (72.349)† 841.156 (58.04)† 855.684 (48.774)†

Instance-7 790.837 (61.685) 999.644 (109.961)† 945.279 (72.786)† 1010.093 (54.545)†

Instance-8 1442.284 (128.363) 1737.017 (166.754)† 1797.055 (122.2)† 1838.744 (187.552)†

Instance-9 1605.757 (176.633) 1913.732 (130.134)† 2011.649 (120.699)† 1970.588 (100.5)†

Instance-10 1615.725 (93.712) 1878.023 (161.51)† 1850.601 (142.496)† 2084.211 (106.295)†

†/�/≈ – 6/1/3 9/0/1 5/2/3

The bold numbers are represent the optimal value of each experiment

Table 6 Performance comparison of IGD in preempt-resume condition

PPLS EMOIS MOIWO MOTLA

Instance-1 296.889 (29.689) 230.612 (20.294)� 355.844 (40.922)† 271.226 (27.394)�
Instance-2 294.533 (21.206) 297.767 (21.141)≈ 354.779 (21.287)† 281.94 (26.502)≈
Instance-3 368.881 (35.413) 374.959 (34.496)≈ 472.723 (31.2)† 347.678 (26.771)≈
Instance-4 656.057 (76.759) 666.31 (44.643)≈ 736.49 (58.919)† 688.686 (42.699)≈
Instance-5 1356.051 (115.264) 1291.477 (78.78)≈ 1398.77 (116.098)≈ 1258.062 (124.548)�
Instance-6 1216.13 (125.261) 1376.378 (94.97)† 1507.744 (117.604)† 1462.239 (99.432)†

Instance-7 1626.66 (190.319) 1779.951 (177.995)† 1832.006 (122.744)† 1865.787 (106.35)†

Instance-8 1432.015 (104.537) 1683.063 (102.667)† 1853.527 (174.232)† 1760.33 (191.876)†

Instance-9 1764.954 (125.312) 2174.526 (213.104)† 2177.77 (132.844)† 2048.478 (219.187)†

Instance-10 1665.306 (156.539) 2004.089 (140.286)† 2067.712 (215.042)† 2146.815 (251.177)†

†/�/≈ – 5/1/4 9/0/1 5/2/3

The bold numbers are represent the optimal value of each experiment

Table 7 Performance
comparison of SP in
preempt-repeat condition

PPLS EMOIS MOIWO MOTLA

Instance-1 7.270 (0.785) 7.377 (0.73)≈ 8.019 (0.473)� 8.498 (0.833)�
Instance-2 7.366 (0.759) 7.811 (0.43)� 8.141 (0.464)� 8.843 (0.964)�
Instance-3 7.981 (0.495) 7.273 (0.662)† 8.12 (0.438)≈ 6.629 (0.703)†

Instance-4 9.850 (0.561) 9.107 (0.61)† 11.56 (0.728)� 10.767 (0.775)�
Instance-5 9.593 (0.835) 10.269 (0.657)� 9.005 (1.009)† 10.916 (0.72)�
Instance-6 15.97 (1.182) 18.588 (1.487)� 15.869 (1.063)≈ 13.202 (0.858)†

Instance-7 13.163 (1.369) 13.708 (0.836)≈ 11.846 (0.746)† 14.147 (1.075)�
Instance-8 14.001 (1.442) 13.809 (1.16)≈ 13.026 (0.808)† 13.875 (0.971)≈
Instance-9 12.776 (0.779) 12.953 (1.282)≈ 13.422 (1.248)≈ 12.626 (1.503)≈
Instance-10 19.016 (1.864) 20.507 (1.128)� 21.545 (1.163)� 15.781 (1.294)†

†/�/≈ – 2/4/4 3/4/3 3/5/2

The bold numbers are represent the optimal value of each experiment
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Table 8 Performance
comparison of SP in
preempt-resume condition

PPLS EMOIS MOIWO MOTLA

Instance-1 6.893 (0.503) 9.479 (0.891)� 5.735 (0.539)† 7.187 (0.446)≈
Instance-2 6.977 (0.733) 8.059 (0.467)� 5.695 (0.513)† 7.478 (0.733)�
Instance-3 10.261 (0.759) 11.148 (0.557)� 9.851 (0.847)≈ 11.91 (1.167)�
Instance-4 10.347 (1.159) 11.478 (0.872)� 11.248 (0.686)� 11.834 (1.325)�
Instance-5 8.143 (0.708) 7.998 (0.904)≈ 8.713 (0.889)� 7.432 (0.81)†

Instance-6 12.797 (1.472) 13.581 (1.589)� 11.711 (0.843)† 12.353 (1.136)≈
Instance-7 13.346 (0.867) 11.29 (0.948)† 15.218 (0.791)� 13.778 (1.571)≈
Instance-8 15.856 (1.823) 12.449 (1.108)† 20.719 (2.445)� 13.278 (1.407)†

Instance-9 13.683 (0.93) 13.523 (1.339)≈ 14.317 (0.802)≈ 15.479 (1.099)�
Instance-10 16.81 (1.328) 17.773 (1.102)≈ 13.782 (1.502)† 17.922 (0.914)�
†/�/≈ – 2/5/3 4/4/2 2/5/3

The bold numbers are represent the optimal value of each experiment

Table 9 Performance comparison of HV in preempt-repeat condition

PPLS EMOIS MOIWO MOTLA

Instance-1 8.36e+12 (9.78e+11) 8.20e+12 (7.46e+11)≈ 7.46e+12 (5.37e+11)† 5.90e+12 (5.55e+11)†

Instance-2 7.66e+12 (8.81e+11) 5.99e+12 (3.47e+11)† 7.38e+12 (4.14e+11)≈ 5.92e+12 (4.14e+11)†

Instance-3 8.52e+12 (7.84e+11) 6.26e+12 (7.51e+11)† 8.16e+12 (8.16e+11)≈ 4.96e+12 (3.87e+11)†

Instance-4 1.65e+14 (1.72e+13) 1.03e+14 (1.05e+13)† 1.46e+14 (1.27e+13)† 1.13e+14 (1.26e+13)†

Instance-5 4.41e+13 (3.00e+12) 1.93e+13 (9.83e+11)† 4.71e+13 (2.59e+12)� 4.36e+13 (3.05e+12)≈
Instance-6 1.69e+14 (2.01e+13) 1.90e+14 (1.65e+13)� 1.48e+14 (1.69e+13)† 1.34e+14 (1.50e+13)†

Instance-7 9.14e+14 (1.02e+14) 7.96e+14 (4.93e+13)† 4.39e+14 (2.37e+13)† 9.23e+14 (6.83e+13)≈
Instance-8 2.43e+14 (2.21e+13) 2.08e+14 (1.08e+13)† 1.93e+14 (9.64e+12)† 2.98e+14 (2.92e+13)�
Instance-9 5.60e+14 (3.14e+13) 5.23e+14 (4.71e+13)† 3.65e+14 (3.03e+13)† 4.49e+14 (5.38e+13)†

Instance-10 8.33e+14 (6.41e+13) 8.25e+14 (8.00e+13)≈ 6.76e+14 (5.68e+13)† 8.82e+14 (4.59e+13)≈
†/�/≈ – 7/1/2 7/1/2 6/1/3

The bold numbers are represent the optimal value of each experiment

Table 10 Performance comparison of HV in preempt-resume condition

PPLS EMOIS MOIWO MOTLA

Instance-1 9.04e+12 (7.50e+11) 7.59e+12 (7.74e+11)† 8.86e+12 (1.01e+12)≈ 7.37e+12 (8.40e+11)†

Instance-2 9.12e+12 (5.84e+11) 7.87e+12 (6.14e+11)† 8.84e+12 (9.28e+11)≈ 7.51e+12 (5.86e+11)†

Instance-3 1.51e+13 (1.65e+12) 1.39e+13 (1.36e+12)† 1.41e+13 (7.45e+11)† 1.20e+13 (1.20e+12)†

Instance-4 1.85e+14 (1.83e+13) 1.87e+14 (1.19e+13)≈ 1.38e+14 (1.31e+13)† 1.54e+14 (1.65e+13)†

Instance-5 3.46e+13 (3.15e+12) 3.00e+13 (3.42e+12)† 3.33e+13 (2.33e+12)≈ 2.43e+13 (2.58e+12)†

Instance-6 1.65e+14 (1.15e+13) 1.80e+14 (1.91e+13)� 1.59e+14 (1.37e+13)≈ 1.67e+14 (1.59e+13)≈
Instance-7 9.58e+14 (9.58e+13) 8.49e+14 (5.60e+13)† 7.75e+14 (5.97e+13)† 8.26e+14 (8.67e+13)†

Instance-8 1.78e+14 (1.80e+13) 1.09e+14 (9.58e+12)† 1.11e+14 (1.19e+13)† 1.46e+14 (1.74e+13)†

Instance-9 3.29e+14 (3.25e+13) 3.44e+14 (3.68e+13)≈ 2.08e+14 (1.97e+13)† 2.88e+14 (2.94e+13)†

Instance-10 1.36e+15 (1.00e+14) 1.28e+15 (6.65e+13)≈ 1.12e+15 (5.60e+13)† 1.12e+15 (1.06e+14)†

†/�/≈ – 6/1/3 6/0/4 9/0/1

The bold numbers are represent the optimal value of each experiment

123



Complex & Intelligent Systems

(a) IGD (preempt repeat condition) (b) IGD (preempt resume condition)

(c) SP (preempt repeat condition) (d) SP (preempt resume condition)

(e) HV (preempt repeat condition) (f) HV (preempt resume condition)

Fig. 4 Performance comparison
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Table 11 The effectiveness of
the acceptance criterion 2 with
respect to SP

Preempt-repeat condition Preempt-resume condition

PPLS PPLS-WN PPLS PPLS-WN

Instance-1 7.270 (0.785) 7.119 (0.736) 6.893 (0.503) 7.366 (0.496)

Instance-2 7.366 (0.759) 7.541 (0.736) 6.977 (0.733) 6.549 (0.780)

Instance-3 7.981 (0.495) 7.645 (0.477) 10.261 (0.759) 9.649 (0.806)

Instance-4 9.850 (0.561) 10.296 (0.525) 10.347 (1.159) 9.669 (1.239)

Instance-5 9.593 (0.835) 9.219 (0.869) 8.143 (0.708) 8.395 (0.753)

Instance-6 15.970 (1.182) 14.922 (1.222) 12.797 (1.472) 11.937 (1.455)

Instance-7 13.163 (1.369) 12.479 (1.452) 13.346 (0.867) 14.085 (0.915)

Instance-8 14.001 (1.442) 14.472 (1.471) 15.856 (1.823) 14.851 (1.932)

Instance-9 12.776 (0.779) 12.496 (0.796) 13.683 (0.930) 12.750 (0.929)

Instance-10 19.016 (1.864) 18.116 (1.741) 16.810 (1.328) 15.794 (1.318)

The bold numbers are represent the optimal value of each experiment

Table 12 The effectiveness of the acceptance criterion 2 with respect to HV

Preempt-repeat condition Preempt-resume condition

PPLS PPLS-WN PPLS PPLS-WN

Instance-1 8.36e+12 (9.78e+11) 8.86e+12 (9.76e+11) 9.04e+12 (7.50e+11) 9.54e+12 (7.75e+11)

Instance-2 7.66e+12 (8.81e+11) 7.41e+12 (8.48e+11) 9.12e+12 (5.84e+11) 8.48e+12 (6.05e+11)

Instance-3 8.52e+12 (7.84e+11) 8.05e+12 (7.32e+11) 1.51e+13 (1.65e+12) 1.47e+13 (1.72e+12)

Instance-4 1.65e+14 (1.72e+13) 1.61e+14 (1.67e+13) 1.85e+14 (1.83e+13) 1.94e+14 (1.79e+13)

Instance-5 4.41e+13 (3.00e+12) 4.55e+13 (3.01e+12) 3.46e+13 (3.15e+12) 3.65e+13 (3.23e+12)

Instance-6 1.69e+14 (2.01e+13) 1.62e+14 (1.90e+13) 1.65e+14 (1.15e+13) 1.63e+14 (1.23e+13)

Instance-7 9.14e+14 (1.02e+14) 8.85e+14 (1.09e+14) 9.58e+14 (9.58e+13) 1.02e+15 (9.51e+13)

Instance-8 2.43e+14 (2.21e+13) 2.27e+14 (2.08e+13) 1.78e+14 (1.80e+13) 1.73e+14 (1.89e+13)

Instance-9 5.60e+14 (3.14e+13) 5.81e+14 (3.24e+13) 3.29e+14 (3.25e+13) 3.38e+14 (3.40e+13)

Instance-10 8.33e+14 (6.41e+13) 8.91e+14 (6.47e+13) 1.36e+15 (1.00e+14) 1.27e+15 (1.03e+14)

The bold numbers are represent the optimal value of each experiment

the value of that element is greater than 0.5, the agent corre-
sponding to the row index is assigned to perform the skill and
the tasks that are represented by the column index. Follow-
ing the above procedure, a feasible resource allocation result
could be obtained. To show the above decoding process more
intuitively, an information collection mission is presented in
Fig. 2 and its decoding process is shown in Fig. 3.

Parallel pareto local search

Decomposition method

TheTchebycheff scalar objective function is selected, because
it can handle the case in which the shape of pareto front is
not convex. W weight vectors λ1, . . . , λW are defined, and
each vector corresponds to a parallel process. The sum of
the elements in each weight vector λw = (λw

1 , . . . , λw
m) is

equal to 1, and λw
m ≥ 0, w ∈ W . Given a positive integer H ,

the way to calculate the value of each weight vector and the
subregion definition for each parallel process w is the same
as [39]. Define z∗ = (z1, . . . , zm) as the Nadir point. Using

the Tchebycheff approach, the objective function for process
w is defined as

max f te(x |λw, z∗) = min
1≤i≤m

{
1

λw
i

( fi (x) − z∗i )
}

. (23)

Framework of the proposed method

The framework of the proposed parallel pareto local search
(PPLS) is shown in Algorithm 1. W processes are running
in parallel. In each process, Aw is initialized to the solutions
both in the pareto front before disruption (A0) and the subre-
gion λw. Mn is number of individuals each parallel process
maintains.

Individual local search

Given an existing solution x , the Gaussian mutation operator
is adopted to conduct local search

x ′
i = xi + N (0, σi ), (24)
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(a) Instance-3 (color deontes parallel process) (b) Instance-3 (color deontes time)

(c) Instance-7 (color deontes parallel process) (d) Instance-7 (color deontes time)

Fig. 5 The search process of PPLS

where xi denotes the ith element of x and N (0, σi ) denotes
a Gaussian random variable with zero mean and standard
deviation σi . If x ′ > 1, set x ′ to 1. If x ′ < 0, set x ′ to 0. In the
beginning, σi is initialized to the same value. The value of σi
is adapted in each based on the 1

5 successful rule proposed
in [40]

σi =
⎧
⎨

⎩

σi/β if nc/Mn > 0.2
σi if nc/Mn = 0.2
σi × β if nc/Mn < 0.2,

(25)

where nc is the number of changed individual in a process,
and β is a fixed parameter.

Acceptance criterion based on constraint handling

A problem-specific constraint handling method is proposed
in this part. For preempt-repeat condition, given an individual

x and using the decoding process designed in Sect. 3.1, the
violation of constraints can be computed as

C(x) =
∑

j∈J∗

∑

l∈L

⎛

⎝ A∗l
j

pmax
j − � j

−
LS j∑

t=Dt

∑

k∈R∗
x jklt · ukl

⎞

⎠ (26)

For preempt-resume condition

C(x) =
∑

j∈J∗

∑

l∈L

⎛

⎝ A∗l
j − Al

j

pmax
j − � j

−
LS j∑

t=Dt

∑

k∈R∗
x jklt · ukl

⎞

⎠ . (27)

In each parallel process, three different conditions are con-
sidered:

(1) There is no feasible solution in the current population
Pop. Considering the constraint violation C(x) as the
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Algorithm 1 parallel pareto local search (PPLS)
PS = {1, . . . ,W } ;
Mi = Mn ;
foreach w ∈ PS do

Aw ← {x ∈ A0|x ∈ subregion λw};
end
while Time Limit is not reached do

foreach w ∈ PS do
Do independently in parallel:
f w = 0
foreach x ∈ Aw do

if x is a feasible solution then
f w+ = 1

end
end
foreach x ∈ Aw do

Generate x ′ using individual local search (Eq. (24));
AcceptFlag = False;
if |Aw| < Mn then

Add x ′ to Aw;
AcceptFalg = True

end
else

Conduct Algorithm 2 to determine whether to accept x ′;
Conduct Algorithm 3 to determine whether to accept x ′;

end
end
if f w == 0 and t > T ime Limit

4 then
Remove w from PS

end
else

Update σw;
end

end
Mn = �Mi × W/|PS|� ;

end

only objective, optimize C(x) until at least one feasible
solution is obtained.

(2) There are both feasible and infeasible solutions in the
current population Pop.We divide the current population
into feasible group Pop1 and infeasible group Pop2. The
objective functions are transformed to Eqs. (28)–(29) to
penalize the infeasible solutions

If e ∈ Pop1:

f ′
i (x) = fi (x). (28)

If x ∈ Pop2:

f ′
i (x) = max

{
ϕ f max

i + (1 − ϕ) f min
i , fi (x)

}
. (29)

Then, the transformed objective functions and the con-
straint violations are normalized

f̃i (x) = f ′
i (x) − minx̄∈Pop f ′

i (x̄)

maxx̄∈Pop f ′
i (x̄) − minx̄∈Pop f ′

i (x̄)
, i ∈ {1, . . . ,m} (30)

C̃ (x) =
{
0, if x ∈ Pop1

C(x)−minx̄∈Pop2 C(x)
maxx̄∈Pop2 C(x)−minx̄∈Pop2 C(x) , if x ∈ Pop2.

(31)

Fi denotes the fitness value for i-th objective, we use Fi
to replace fi in Eq. (23), Fi can be calculated as

Fi (x) = f̃i (x) + C̃ (x) , i ∈ {1, . . . ,m}. (32)

(3) All the solutions in a population are feasible. The fitness
value equals the corresponding objective value.

The detail of acceptance criterion 1 is presented in Algo-
rithm 2.

Algorithm 2 Acceptance criterion 1
if AcceptFalg == True then

break;
end
else if Fte(x ′|λw, z∗) > min

x∈Aw

Fte(x |λw, z∗) then
Replace x with x ′;
AccepFlag = True;

end
else

Discard x ′;
end

Acceptance criterion based on negative correlation

For i th parallel process, the average of the solutions it main-
tains is denoted as x̃i . The Bhattacharyya distance is used to
present the negative correlation between different process.
The Bhattacharyya distance between parallel process pi and
p j is defined as

DB
(
pi , p j

) = 1

8

(
x̃i − x̃ j

)T
�−1 (

x̃i − x̃ j
)

+1

2
ln

(
det�√

det�i det� j

)
, (33)

where �i is σ 2
i I , I is the identity matrix, and � = (�i +

� j )/2. The main idea behind the criterion based on negative
correlation is that, for a parallel process, the selected solution
should be with high quality and should lead to a distribution
that is distant from the other parallel processes. The former
can be represented by Eq. (32). The latter can be represented
as

Corr (pi ) = min
j

{
DB

(
pi , p j

) | j 
= i
}
. (34)

Then, normalization is conducted by requiring Corr(x) +
Corr(x ′) = 1. Using the above definitions, the detail of
acceptance criterion 2 is presented in Algorithm 3.
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Algorithm 3 Acceptance criterion 2
if AcceptFalg == True then

break;
end
else if F(x ′)/Corr(p′

w) < ε then
Replace x with x ′;
AccepFlag = True;

end
else

Discard x ′;
end

Experiment

A computer with Intel E5 3.6 GHz CPU and 32 GB of RAM
is used to conduct the experiment in this article. The algo-
rithms discussed in this part are coded inC++. Three effective
multi-objective algorithms for RCPSP are selected as the
comparison algorithms.

• EMOIS [41], which uses an improved NSGA-II to solve
multi-objective multi-skill RCPSP.

• MOIWO [42], in which a modified multi-objective inva-
sive weeds optimization algorithm is proposed to solve
multi-mode multi-skill RCPSP.

• MOTLA [43], which uses teaching–learning-based opti-
mization algorithm to solve multi-objective multi-skill
RCPSP.

Performancemetric

Five metrics are considered. Since the true pareto front is
unknown, the P∗ is obtained by merging all the approxima-
tion pareto fronts found by all the algorithms. The metrics
that describe the quality of the pareto front:

Inverted Generational Distance (IGD) [44]: The value of
IGD shows the convergence and the diversity of the obtained
pareto front at the same time. IGD can be calculated as

IGD =
∑

i∈P D (i, P∗)
|P∗| , (35)

where D (i, P∗) is theminimumEuclidean distance between
i and the point in P∗. Smaller IGD is better.

Spacing (SP) [44]: SP shows the diversity of the obtained
pareto front, which is defined as

SP =
√√√√ 1

(n′ − 1)d̄

n′∑

i=1

(
di − d̄

)2
, (36)

where n′ denotes the number of non-dominated solutions,
and di is the Euclidean distance between the two nearest

non-dominated solutions of the obtained pareto front and the
true pareto front, the average of which is denoted as d̄. The
pareto front with a larger SP value shows better performance
on solutions diversity.

HypervolumeMetric (HV)[44]: The value of HV shows the
convergence and the diversity of the obtained pareto front
simultaneously. HV represents the objective space volume
which is dominated by the approximation pareto front P and
delimited from above by a reference point r ∈ R

n . HV is
defined as

HV (P, r) = λm

(
⋃

x∈P

[x; r ]
)

, (37)

where xi denotes a point in the pareto front P , and λm
represents the m-dimensional Lebesgue measure. (max f1,
max f2,max f3) is adopted as the reference point. The pareto
front with a larger HV value has better performance.

Test instance

The MS-RCPSP test instance generator proposed in [45] is
modified to generate new instances for our problem. Some
parameters which can be used to describe the difference
between the test instances are presented: (1) nAct : the num-
ber of non-dummy information collection tasks in a mission.
(2) K : the number of resource(agent)which can be used in the
information collection mission. (3) |L|: the number of skill
types. (4) NC : the average number of successors of each
task, which is used to represent the network complexity. (5)
MD, the number of tasks that are influenced by the disrup-
tion. (6) Skill factor SF : skill factor, which represents the
relationship between the number of skill types required to in
an information collection task. (7) RSSl : resource strength,
which shows the relative relationship between the task’s skill
requirement and the corresponding resource’s supply. Ten
test instances are generated, and detailed information of the
test instance is shown inTable 3. Each instance is tested under
preempt-repeat and preempt-resume conditions.

Parameters’ tuning

Taguchi method is applied to tune the parameters as [44].
Three levels of each parameter are considered (Table 4), and
the best value is in bold. The time limit for all algorithms is
60 s.

Performance evaluation

All rendered results are obtained by performing ten indepen-
dent runs of each algorithm. The time limit is set to 60s.
The average value and standard deviation are calculated and
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are shown in Tables 5, 6, 7, 8, 9, and 10 and Fig. 4. The
Wilcoxon’s rank sum test at 5% significance level is used
to present the difference between the comparison algorithm
and the algorithm designed in this article. Using T ′ to denote
the rank sum of the comparison algorithm result. Accord-
ing to the rank sum table, P(82 < T ′ < 128) = 0.05, that
is, T ′ > 128 means that the comparison algorithm is worse
than the proposed algorithm, T ′ < 82 represents the com-
parison algorithm is better than the proposed algorithm, and
82 < T ′ < 128 means the comparison algorithm is similar
to the proposed algorithm. The symbols †, �, and ≈ denote
that the performance of the proposed algorithm in this article
is better, worse, and similar than the comparison algorithm.
The standard deviation is shown in parentheses, and the data
in bold are the best value found in the corresponding test
instance.

First, the performance on IGD is discussed. The PPLS
outperforms the other algorithms significantly. The PPLS
obtains 7 best solutions in preempt-repeat condition and 6 in
preempt-resume condition. It is clear that PPLS obtains the
best pareto front. MOTLA has the second-best performance
generally.

Second, SP of each algorithm is compared. PPLS obtains
only 1 best solution in preempt-repeat condition and 0 in
preempt-resume condition. The algorithm with higher qual-
ity pareto front usually does not has competitive performance
on SP, so the performance of PPLS is acceptable. Besides,
none of the comparison algorithms has a clear advantage over
the others.

Third, with respect to HV, PPLS obtains 5 best solutions
in preempt-repeat condition and 7 in preempt-resume con-
dition. MOTLA finds the 3 best solutions in preempt-repeat
condition, which is the closest to PPLS. EMOIS finds 3 best
solutions in preempt-resume conditions. MOIWO has the
worst performance and PPLS has the best performance.

Fourth, the experiment is conducted to show the effective-
ness of the proposed acceptance criterion based on negative
correlation. PPLS-WN represents the proposed PPLS with-
out the acceptance criterion based on negative correlation.
HVandSP are calculated under preempt-repeat and preempt-
resume condition, the results are presented in Tables 11 and
12. The results clearly show that the acceptance criterion
based on negative correlation can increase the diversity of
the obtained pareto front without reducing its quality.

Furthermore, to show the PPLS’s search process better,
5 moments are presented on instance-3 and instance-7, as
shown in Fig. 5.

Summarizing, the proposedmethod outperforms the com-
parison algorithms generally. The reasons why the proposed
method outperforms other algorithms can be concluded as
follows:

• The framework of PPLS is designed specifically to fit
the information collection mission reactive scheduling
problem’s characteristics.

• The proper design of the solution representation and
decoding scheme contributes to reducing the search
space.

• For the information collection mission reactive schedul-
ing problem within a short time limit, the algorithm with
stronger local search ability tends to have better perfor-
mance, and the importance of global search ability is
relatively weak.

Conclusion

This article focuses on providing decision support for the
decision-makers when disruption prevents the disaster infor-
mation collection mission from completing the work as
planned. When disruption occurs, it is vary difficult for the
decision-makers tomake high-quality reactive decisions. The
disaster information collection resource scheduling problem
is modeled as an extension of resource-constrained project
scheduling problem (RCPSP). The mathematical model of
the disaster reactive decision support problem with two
recovery models is given. A novel framework of a paral-
lel pareto local search based on decomposition is specially
designed to provide reactive decisions for the decision-
makerswithin the time limit. Two solution acceptance criteria
based on constraint handling and negative correlation are also
proposed to maintain high-quality population with diversity.
The experiments have been conducted and the results show
the proposed method outperforms the other competitors. As
a part of our future research plan, we aim to develop new
algorithms for solving RCPSPs involving complex practi-
cal issues, such as the prediction of dynamic disruptions
and resource uncertainty. Although the proposed algorithm
is efficient, it is not a real-time algorithm. The user experi-
ence of real-time decision support systems is significantly
better than that of non-real-time systems. Using the deep
reinforcement learning method to train a policy network
which represents the reactive policy when disruption hap-
pens is a possible way to realize real-time decision support.
Although the training process might be time-consuming, it
can be viewed as a preparation before the use of the decision
support system. Once the policy network is obtained, the
time cost of the reactive scheduling process will be in mil-
liseconds. Game theory can also be introduced in the deep
reinforcement learning methods to explore the interesting
interaction between decision-making and the environment’s
feedback.
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