
Problem-specific multi-objective invasive weed optimization
algorithm for reconnaissance mission scheduling problem

Abstract

With the progress of technology, the multi-agent system is successfully applied in many appli-
cations. In this paper, we investigate the problem of multi-agent system reconnaissance mission
scheduling, which is the core of the reconnaissance decision support system and can be modeled as
an extension of Multi-Mode Multi-Skill Resource-Constrained Project Scheduling Problem. Three
objectives are considered in this paper: (1) minimizing the reconnaissance mission’s makespan, (2)
minimizing the total cost of allocating reconnaissance agents, and (3) maximizing the total quality
of all reconnaissance tasks. An effective problem-specific multi-objective invasive weed optimization
algorithm (PS-MOIWO) is proposed for solving the problem. Firstly, a new chromosome structure
guaranteeing the feasibility of solutions and an initialization method are proposed. Secondly, we
propose a self-adaptive penalty-based constraint handling technique to describe the fitness of each
individual and adopt a novel non-dominated sorting method to rank the population. Thirdly, by
using the problem-specific knowledge, a local search procedure is developed and incorporated into
the PS-MOIWO framework to enhance the exploitation ability. Based on the Taguchi method,
algorithm’s suitable parameter combinations are determined. Simulation results based on a set
of newly generated reconnaissance instances and the comparisons with some existing algorithms
demonstrate the proposed algorithm’s effectiveness.
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1. Introduction

The widespread usage of robotic systems has brought a lot of convenience to humans. But in
real-world applications, there are still many scenarios where robotic systems cannot replace humans.
In such cases, manned and unmanned systems need to work together to deal with complex tasks.
A system with several manual and unmanned equipment can be modeled as a multi-agent system,5

for the agents in a multi-agent system could equally well be robots, humans, or human teams. The
reconnaissance mission is an example where manned and unmanned systems are involved simultane-
ously. Therefore, the human resource and unmanned equipment that performs the reconnaissance
mission is usually modeled as a multi-agent system. As shown in Fig. 1, a reconnaissance mis-
sion consists of several reconnaissance tasks and a network that denotes the precedence relations10

between tasks, the agents assigned to a reconnaissance task make exploration in that area to gain
information about natural features and human activities. The precedence relation means one task
can be started to be processed only if all its predecessor tasks are finished. Usually, there are not
enough agents to perform all the tasks which can perform according to the precedence relations at
the same time. We need to schedule the start time of each task and assign agents to each task,15

which is the reconnaissance mission scheduling problem investigated in this paper. Reconnaissance
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missions can be conducted in military operations (Kim et al., 2017), where the action of enemies
and geographical information of the combat area are collected by military reconnaissance multi-
agent system. Forest fire management (Laszlo et al., 2018) also contains reconnaissance on fire
information, where firefighters need to work with drones to collect fire information. Reconnaissance20

mission also exists in environmental protection (Chen et al., 2019) and agricultural applications
(Bloss, 2014). Choi & Ahn (2020) proposed to use imitation learning to plan UAV path for re-
connaissance. John A. Richards (2019) focused on using autonomous multi-sensor platforms to
conduct intelligence, surveillance, and reconnaissance mission. Several features of reconnaissance
mission are summarized as follows:25

• The reconnaissance mission consists of several tasks with precedence relations.

• Geographical locations are different for different tasks.

• Each task requires one or more execution abilities (skills) to be performed. As shown in Fig. 2,
a reconnaissance task requires at most three types of skills.

• Each task has a start point and a finish point. The start point specifies the location for30

reconnaissance agents to enter the task area. The finish point specifies the location for recon-
naissance agents to leave the task area.

• Reconnaissance agents can provide the skill required to perform tasks. Considering the pro-
ficiency level of human resources and equipment status are different, different agents usually
provide both different types and different amounts of skills.35

• Each task is specified with the longest processing time. The processing time of a task is a
non-linear function of the agent allocation result.

• The makespan of reconnaissance mission, the cost, and the quality of performing a reconnais-
sance mission are three important indicators to evaluate a reconnaissance mission schedule.

The precedence relations between tasks are of great importance to the successful execution of the40

reconnaissance mission. As in forest fire management and some military applications, it could be
dangerous to enter an area when the path’s information is unclear, which may cause damage or loss
of the agents. Thus the precedence relations between tasks must be respected during the execution of
the reconnaissance mission. Then, a detailed explanation of Fig. 1 is given, the green point denotes
the start point, and the red point denotes the finish point. The yellow lines are the paths between45

different tasks. Some agents are available to conduct the reconnaissance mission. Reconnaissance
mission scheduling is to schedule a given set of tasks with a finite set of reconnaissance agents, while
the makespan, the cost, and the quality are optimized. Such scheduling process needs to answer
the following questions: for a given task, when the task starts, which agent is assigned to perform
that task, and what kind of capabilities each agent provides. Reconnaissance mission scheduling50

is the core of the reconnaissance decision support system, which plays a vital role in the system’s
performance.

In operation research, Resource-Constrained Project Scheduling Problem (RCPSP) is a research
hotspot that has received the attention of many researchers (Zheng et al., 2017). It consists of find-
ing a schedule for the project of activities with precedence constraints under the limited resource55

availability (Abdolshah, 2014). The most common goal of the basic version of RCPSP is to minimize
the duration (makespan) of the project without violating the priority constraints. Many similarities
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Figure 1: Reconnaissance mission example.
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Figure 2: Reconnaissance task division by skill requirement.

exist between the reconnaissance scheduling problem and RCPSP. Both of the two problems con-
sist of several tasks (activities) with precedence relations. The tasks in the reconnaissance mission
require some abilities to be performed, the “some ability” corresponds to the phrase of “multi-skill”60

for RCPSP. The agent which could be used to perform reconnaissance tasks is similar to the defini-
tion of “resource” in RCPSP. The multiple possible processing time of the reconnaissance task can
be viewed as the “multi-mode” feature of RCPSP. Because of the above similarities between the
project scheduling and reconnaissance scheduling, the reconnaissance mission scheduling problem
is modeled as an extension of Multi-Mode Multi-Skill Resource-Constrained Project Scheduling65

Problem (MMMS-RCPSP). In this paper, we present the mathematical formulation of the recon-
naissance mission scheduling problem. Because the problem investigated in this paper is NP-hard,
to solve the problem, we propose a problem-specific multi-objective invasive weed optimization algo-
rithm (PS-MOIWO). The experiment shows the proposed algorithm outperforms other comparison
algorithms.70

The contributions of this paper are fourfold: (1) A non-linear integer programming model of
reconnaissance mission scheduling problem is established. (2) A problem-specific multi-objective
invasive weed optimization algorithm is proposed. (3) A self-adaptive penalty based constraint
handling technique is developed. (4) The experiment results prove the effectiveness of the proposed
algorithm.75

The rest of the paper is organized as follows. Section 2 presents a short summary of existing
publications. The mathematical formulation of the reconnaissance mission scheduling problem is
presented in Section 3. In Section 4, a problem-specific multi-objective invasive weed optimization
algorithm (PS-MOIWO) is proposed. Section 5 shows the experiment result. Section 6 concludes
the article and presents our future research plan.80
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2. Related work

In this paper, the reconnaissance scheduling problem is modeled as an extension of multi-skill
multi-mode RCPSP, the agent in the reconnaissance mission has the multi-skill feature. Therefore
we can refer to the relevant research on MS-RCPSP. The traditional RCPSP deals with the resource
with a single skill. But in many applications, the resource may have more than one type of skill,85

which is multi-skill RCPSP (MS-RCPSP) (Das & Acharyya, 2011; Skowroński et al., 2013). Néron
(2002) firstly defined MS-RCPSP, Bellenguez-Morineau & Néron (2007) proposed a branch and
bound algorithm for multi-skill project scheduling problems. In most applications of the project
scheduling problem, finding its optimal solution is time-consuming. Therefore designing heuristic
or meta-heuristic method attracts the interest of many researchers. Kazemipoor et al. (2002)90

used a simulated annealing algorithm to solve MS-RCPSP. Chen & Zhang (2012) developed a
novel approach with an event-based scheduler and an ant colony optimization algorithm to deal
with software project scheduling problem, which is an extension of MS-RCPSP. Using different
neighborhood generation methods, two types of Tabu Search for MS-RCPSP have been proposed
in Skowroński et al. (2013). Myszkowski developed a hybrid ant colony optimization (HAntCO)95

approach in Myszkowski et al. (2015), and an application of Greedy Randomized Adaptive Search
Procedure (GRASP) in Myszkowski & Siemieński (2016) for MS-RCPSP. Almeida et al. (2016)
proposed the concept of resource weight and task group. Based on these concepts, they proposed
a new parallel heuristic framework to solve MS-RCPSP. Their algorithm is very efficient in finding
feasible solutions. Myszkowski et al. (2017) incorporated task-resources prioritizing method into100

a co-evolution based approach to solve MS-RCPSP. Myszkowski et al. (2018) used an indirect
representation coding method to transform the discrete searching space to continuous space to
deal with MS-RCPSP, and a hybrid differential evolution algorithm was proposed in their paper.
Hosseinian et al. (2019) proposed a new mixed-integer formulation for the time-dependent MS-
RCPSP considering the resource’s learning effect.105

Multi-mode resource-constrained project scheduling (MM-RCPSP) is another extension of RCPSP,
in which each task has several execution modes. Different modes represent different resource re-
quirements and processing time. Reconnaissance mission scheduling problem has the multi-skill
feature and has the multi-mode feature, so the related work of MM-RCPSP is presented in this
part. Alcaraz et al. (2003) extended the representation and operators previously designed for the110

single-mode version of the project scheduling problem, and a genetic algorithm was developed to
deal with MM-RCPSP. A priority-based heuristic algorithm with polynomial computational com-
plexity was firstly proposed in Hsu & Kim (2005) to make resource allocation in MM-RCPSP. A
bi-population genetic algorithm was proposed in Van Peteghem & Vanhoucke (2010), in which the
two separate populations provide better parallelism for algorithm implementation and improve the115

quality of solutions. Cheng et al. (2015) focused on MM-RCPSP with non-preemptive task splitting.
A precedence tree-based branch-and-bound algorithm was proposed to find the optimal solution.
In most cases, the algorithm takes a lot of time to obtain the optimal solution. A model consid-
ering the disruptions in MM-RCPSP was proposed in Chakrabortty et al. (2016). They developed
an adaptive metaheuristic procedure based on a neural network to find feasible solutions. Zoraghi120

et al. (2017) formulated a novel model for the MM-RCPSP with material ordering problem and used
hybrid metaheuristic algorithms to obtain a feasible solution. The alternative project structures
were taken into consideration in Tao & Dong (2018). A bi-objective linear integer programming
model was proposed to trade-off total makespan and cost, a hybrid metaheuristic that combines
tabu search and NSGA-II was designed. Chakrabortty et al. (2019) proposed to use a modified125

version of the variable neighborhood search algorithm to solve the MM-RCPSP. The experiment
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showed that their algorithm obtains very high-quality solutions. The waterway ship scheduling
problem was modeled as MM-RCPSP in Hill et al. (2019), an integer programming approach was
presented to obtain the optimal solution.

Neither MS-RCPSP nor MM-RCPSP can be used to solve the reconnaissance mission scheduling130

problem independently. Very few papers study multi-mode multi-skill RCPSP. To the best of the
author’s knowledge, there are only three related papers (Kadrou & Najid, 2006; Santos & Tereso,
2011; Maghsoudlou et al., 2016). Kadrou & Najid (2006) proposed a heuristic algorithm for multi-
mode multi-skill RCPSP. The idea of the heuristic is to enumerate some schedulable combinations
of tasks with an appropriate resource assignment and schedule from them the one having the best135

value for an evaluation criterion, the objective is to minimize the makespan of the project. Santos
& Tereso (2011) presented a heuristic algorithm for multi-mode multi-skill RCPSP and a software
application using that algorithm. In their algorithm, a penalty function was included for tardiness
beyond the specified time of allocation to make mode selection. Minimizing the makespan of the
project is the only objective. The above two algorithms can only deal with single objective cases,140

but the reconnaissance mission scheduling problem investigated in this paper has three objectives.
Maghsoudlou et al. (2016) proposed a new multi-objective invasive weed optimization algorithm
to deal with the multi-mode multi-skill RCPSP. There are some differences between the problem
in Maghsoudlou et al. (2016) and reconnaissance mission schedule: (1) Maghsoudlou et al. (2016)
assumed the exact information of each mode is known, the same as the other traditional multi-mode145

RCPSP. But the mode information of the reconnaissance mission needs to be calculated. Suppose
we transform the reconnaissance mission scheduling problem to multi-mode RCPSP, because the
processing time is a non-linear function of agent allocation result and the inequality of agents’
skills. In that case, the mode number of a task is between 3312 to 56231. But in research papers
(Chakrabortty et al., 2016; Zoraghi et al., 2017; Tao & Dong, 2018; Chakrabortty et al., 2019)150

dealing with MM-RCPSP, the numbers of mode for a task are all less than 18. Obviously, the mode
number of the problem investigated in this paper is significantly higher than that of traditional
MM-RCPSP. The time cost of solving reconnaissance mission scheduling problems with traditional
MM-RCPSP method approximates greedy search. (2) Maghsoudlou et al. (2016) assumed the
transfer time between different tasks is zero, contrary to the reconnaissance task. (3) Maghsoudlou155

et al. (2016) assumed the amount of skill mastered by the same type of resource is always the same.
Still, in reconnaissance mission, even two agents of the same type usually master the different
amount of skills, which is another reason that leads to the number of mode in reconnaissance
mission larger than that of traditional MM-RCPSP. (4) In reconnaissance mission scheduling, there
is an upper bound of the number of agents assigned to a reconnaissance task, which is not considered160

in Maghsoudlou et al. (2016). The solution representation in Maghsoudlou et al. (2016) can not
be used for reconnaissance mission scheduling. (5) The project’s quality is assumed to be time-
dependent in Maghsoudlou et al. (2016), but the reconnaissance’s quality is time-relevant.

Invasive weed optimization algorithm (IWO) was firstly proposed by Mehrabian & Lucas (2006).
The idea behind IWO is inspired by an agricultural phenomenon: the colonization of invasive weeds.165

The algorithm has the following features: simple structure, fewer parameters, strong robustness,
easy to understand, and easy to program. Because IWO has the above advantages, it has been
successfully applied to the cooperative multiple task assignment of UAVs (Ghalenoei et al., 2009),
constrained optimization of combustion at a coal-fired utility boiler (Zhao et al., 2009), constrained
engineering design (Su et al., 2009), permutation flow-shop scheduling problem (Chen et al., 2013)170

and other applications.
Overall, there is no paper published modeling the reconnaissance mission scheduling problem
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considering the following features simultaneously: (1) The mission, which consists of several tasks
with precedence relations, the precedence relations between tasks must be respected when perform-
ing the mission. (2) Three objectives are considered, the makespan of the mission, cost, and quality175

of performing the mission. (3) Each reconnaissance agent has at least one type of skill; given a
specific type of skill, the skill units masted by different agents are usually different. (4) The pro-
cessing time of each task is a problem-specific non-linear function of the agent assignment result.
(5) The transfer time between different tasks is considered. Apparently, no algorithm was designed
specifically for reconnaissance mission scheduling problems. We need to use problem information180

to design a more effective algorithm.

3. Problem formulation

The objectives of the reconnaissance mission scheduling problem are threefold: (1) minimizing
the reconnaissance mission’s makespan, (2) minimizing the total cost of allocating reconnaissance
agents, and (3) maximizing the total quality of processing reconnaissance tasks. The precedence185

relationship between tasks is modeled as a task on node network G = (V,E), where V represents a
set of tasks, E indicates the precedence relationship between tasks.

3.1. Assumptions

The following assumptions are made for the reconnaissance mission scheduling problem:

• Tasks are numbered topologically with 0 and N + 1 as dummy start and dummy end tasks.190

• Preemption is not allowed. That is, if a task is being processed, it must be processed to the
end.

• All multi-skill resources used in the reconnaissance mission are reconnaissance agents and are
modeled as renewable resources corresponding to the definition in project scheduling.

• Each agent can only contribute one skill to a specific task at the same time.195

• Each agent performs a reconnaissance task with a pre-defined cost and quality.

• An task can start to be processed if all the agents assigned to it have been transferred to the
start point.

3.2. Notations

The notations used in problem formulation are listed in Table 1. N is the number of non-200

dummy tasks. A reconnaissance mission has two dummy tasks: start task and end task, start task
is denoted as task 0, end task is denoted as task N + 1.

Some indices are used:

• i, j: index of tasks, i, j = 0, 1, 2, ..., N,N + 1.

• l: index of skills of reconnaissance agent, l = 1, 2, ..., LN .205

• k: index of reconnaissance agent (resource), k = 1, 2, ...,K.

• t: index of time step.
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Table 1: The symbols.

Symbols Description

N the number of non-dummy tasks.
V = {0, . . . , i, . . . , j, . . . , N + 1} set of tasks, task 0 and N + 1 are dummy tasks.
R = {1, . . . , k, . . .K} set of agents (resources)
L = {1, . . . , l, . . . LN} set of skills corresponding to reconnaissance capacity.

Pj , P
I
j tasks which are the direct and indirect predecessor of task j respectively.

Sj , S
I
j tasks which are the direct and indirect predecessor of task j respectively.

Lj skills required by task j.

Lk skills mastered by resource k.
Vk tasks which require at least one skill mastered by resource k.

Al
j size of the area in task j which requires skill l.

Rj agents which can contribute at least one skill required by task j.

RAl
j agents allocated to perform skill l in task j.

MRj the maximum number of agents assigned to task j.
ukl the units of skill l that agent k masters.
ckl cost of performing skill l by agent k per unit time.
qkl quality of performing skill l by agent k per unit time.
pj the processing time of task j.
pmax
j the longest processing time of task j.

Γj the setup time of task j.
∆ij transfer time between task i to task j.
UB the upper bound of the makespan of a reconnaissance mission.
T = {0, . . . , t, . . . , UB} set of discrete time steps.
ESj , LSj , earliest and latest start times of task j.
sjt (decision variable) is 1 if task j is to be processed at time t, 0 otherwise.
xjklt(decision variable) is 1 if resource k processes task j with skill l at time t and the value of t

equals to the start time of task j, 0 otherwise.
zijk(decision variable) is 1 if resource k is transferred for i to j, 0 otherwise.

3.3. Mathematical formulation

We extend the model of Almeida et al. (2019). The mathematical formulation of the reconnais-
sance mission scheduling problem can be formulated as follows:210

f1 = min

LSN+1∑
t=ESN+1

ts(N+1)t , (1)

f2 = min
∑
j∈V

∑
l∈L

∑
k∈R

∑
t∈T

ckl · pj · xjklt , (2)

f3 = min
∑
j∈V

∑
l∈L

∑
k∈R

∑
t∈T

pmaxj

·pj · qkl · xjklt
, (3)

s.t. pj = max
l∈Lj

{Γj +
Alj∑

k∈R
∑
t∈T ukl · xjklt

} , j ∈ V, (4)∑
l∈L

∑
k∈R

∑
t∈T

xjklt ≤MRj , j ∈ V, (5)

LSj∑
t=ESj

sjt = 1 , j ∈ V, (6)

∑
l∈L

xjklt ≤ sjt , j ∈ V, k ∈ R,ESj ≤ t ≤ LSj , (7)

8



LSj∑
t=ESj

tsjt −
LSi∑
t=ESi

(t+ pi)sit − (UB + ∆ij) · zijk ≥ −UB , i ∈ V \{n+ 1}, j ∈ V \P Ii , k ∈ R, (8)

∑
j∈V

min{LSj ,t}∑
τ=max{ESj ,t−pj+1}

∑
l∈L

xjklτ ≤ 1 , k ∈ R, t ∈ T, (9)

∑
j∈V

zijk ≤ 1 , i ∈ V, k ∈ Ri ∩Rj , (10)

∑
i∈V \SI

j

zijk ≥
∑

e∈V \P I
j

zjek , j ∈ V \{0}, k ∈ Rj , (11)

LSj∑
t=ESj

∑
k∈R

ukl · xjklt ≥
Alj

pmaxj − Γj
, j ∈ V \{0, n+ 1}, l ∈ L, (12)

∑
l∈L

LSj∑
t=ESj

xjklt =
∑

i∈V \{n+1}

zijk , j ∈ V \{0, n+ 1}, k ∈ Ri ∩Rj , (13)

sjt ∈ {0, 1} , j ∈ V, t ∈ T, (14)

xjklt ∈ {0, 1} , j ∈ V, k ∈ R, l ∈ L, t ∈ T, (15)

zijk ∈ {0, 1} , i ∈ V \{0}, j\{SIj }, k ∈ Ri ∩Rj . (16)

Eqs. (1) to (2) are the objective functions. Eq. (1) is to minimize the makespan of the recon-
naissance mission, the value of Eq. (1) is the start time of the dummy end task, which equals the
makespan of the reconnaissance mission. Eq. (2) aims to minimize the cost of allocating reconnais-
sance agents to perform all tasks. Eq. (3) is to minimize the reciprocal of the sum of the task’s215

qualities, which is equal to maximize the sum of qualities of all tasks. Constraint (4) defines how
to compute the processing time of a reconnaissance task when agent allocation has been made.∑
k∈R

∑
t∈T ukl × xjklt in constraint (4) denotes the total units of skill l assigned to perform task

j. Constraint (5) restricts the maximum number of reconnaissance agents assigned to a task. Con-
straint (6) ensures that each task can only start once. Constraint (7) ensures that each agent can220

only provide one skill to a task. Constraint (8) considers the transfer time and precedence relation
between reconnaissance tasks while making sure that a task can only be processed when all the
agents assigned to it have reached the start point. The precedence relation means that one task
can start to be processed if all its predecessors have been finished. Constraints (9) and (10) restrict
that each agent can not be assigned to a task more than once. Constraint (11) ensures that if an225

agent is transferred to a task, the agent’s current position must be the predecessor or the indirect
predecessor of that task, which avoids inefficient assignments that an agent is assigned to transfer
from a successor task to a predecessor task. Constraint (12) means that enough agents are assigned
to tasks to make sure the processing time is less than the corresponding longest processing time.
Constraint (13) shows the relationship between decision variable x and z, which means that if an230

agent is assigned to perform a task, it must be transferred from another task. Constraints (14)
to (16) define the domain of each decision variable. Apparently, RCPSP is a particular case of
reconnaissance mission scheduling problem. RCPSP is proven to be NP-hard in Blazewicz et al.
(1983). Therefore, the reconnaissance mission scheduling problem is NP-hard.
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4. The proposed PS-MOIWO235

4.1. Algorithm framework

The colonial behavior of invasive weeds inspires the traditional IWO algorithm. The vitality
of the invasive weeds is tenacious, and people are working hard to clear them. But the constant
evolution makes them more adaptable. Given this ability of invasive weeds, Mehrabian used an
abstract way to simulate their behavior to obtain a powerful optimization algorithm. Based on240

Mehrabian’s work, the multi-objective version of the population-based invasive weed optimization
algorithm known as MOIWO is developed by Kundu et al. (2011). In MOIWO, a group of weeds
make up the initial population. Their seeds spread in designated pastures and become new weeds.
A new weed colony is formed around the parent weeds. Weeds growing in more arable areas will
have higher competency and more survival opportunities. Therefore, higher breeding will be carried245

out in the vicinity of these weeds. With the increase of iterations, the distance between the newly
generated weeds and the parent weeds will gradually decrease. In the beginning, a larger distance
can diversify the weeds generated in more extensive search space. With the algorithm’s processing,
the convergence is accelerated by dynamically reducing the distance between parent weeds and child
weeds.250

The framework of the proposed PS-MOIWO is presented as follows:
Step 1 Generate P0 individuals using population initialization algorithm proposed in Section 4.3.
Step 2 Evaluate the population using fitness function proposed in Section 4.6, prioritize the pop-
ulation using the sorting method illustrated in Section 4.7.
Step 3 Generating a new colony of weeds. Let some individuals in the population generate some255

seeds. The individuals with better adaptability will make more seeds than others. The number of
seeds will be calculated using the following equation:

seedsi = floor

(
Smin + (Smax − Smin) ·

(
np− ranki

np

))
(17)

where seeds i represents the number of seeds generated by individual i. ranki is the position
of individual i in the population after sorting. Smin and Smax denote minimum and maximum
numbers of seeds generated by each weed.260

Step 4 The generated seeds are scattered in the search space using a number sampled by a standard
gaussian distribution with a mean value of zero and a standard deviation which can be calculated
as:

σcurrent = (NOG−NOGcurrent)
n · σinitial − σfinal

NOGn
+ σfinal (18)

where n is a coefficient of non-linear regulation, NOG is the maximum number of generations, and
NOGcurrent is the current generation number.265

Step 5 Conduct the local search method proposed in Section 4.4 on each seed.
Step 6 If the number of individuals in a population becomes larger than the maximum size of
population (Pmax), rank the population and preserve the best Pmax number of individuals.
Step 7 Repeat the process until the stopping criterion is met (maximum number of generations,
NOG).270
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4.2. Solution representation
In this paper, each chromosome is represented as a task vector with a resource matrix. The first

part of a chromosome is a random-key based task vector (π = {π1, π2, . . . , πN}). Each task vector
element takes a random value from 0 to 1, representing the priority of the corresponding task. To
decode the task vector to a feasible task list, N elements of the task vector are separated and sorted275

in ascending order. The task list sequence is obtained for activities: each place of the task list is
placed with the highest-ranking task while satisfying the precedence constraints. The second part
of a chromosome is a resource matrix, which specifies the agents assigned to tasks and each agent’s
skill to perform. The matrix is denoted as M . It has K rows and

∑
j∈V |Lj | columns, K is the

number of agents, |Lj | represents the number of skills that task j requires to be performed. The row280

of resource M represents each agent. The column represents the skill requirement of the task. The
element in M takes value from 0 to 1. If task-i is in the ip-th position of task list π and requires
Lj kinds of skills, the

∑
j∈{π1...πip−1} |Lj | + 1 column in matrix M represents the agents assigned

to task-i to perform the first type of skill required by task-i, the
∑
j∈{π1...πip−1} |Lj | + e column

in matrix M represents the agents assigned to task-i to perform the last type of skill required by285

task-i. Moreover, the decoding process of an activity vector and resource matrix guarantees the
obtained solution’s feasibility. For all columns that represent the skill requirements of a specific
task, given a row that corresponds to an agent, if the largest value of the elements determined by a
certain row and these columns are larger than 0.5 and the agent processed the corresponding skill,
then the agent represented by this row is assigned to perform that skill to the task defined by the290

column of this largest element, otherwise do the same thing to the second-largest value until all the
skills that the agent masters are visited. A small-size reconnaissance mission with 5 tasks and 3
agents is presented to illustrate the solution representation and decoding process. The precedence
network is shown as Fig. 3. The skill requirement of the mission is shown in Table 2. Note that the
skill requirement is the minimum skill requirement that must be satisfied. The skill information of295

each agent is presented in Table 3. The solution structure is shown in Fig. 4. Fig. 5 illustrates the
decoding process for the task vector to get a task list. Based on the task list, the column definition
of a resource matrix is shown in Fig. 6. Fig. 7 shows the decoding process for task-2 to get the
resource allocation result.

Table 2: The minimum skill requirement of small-size reconnaissance mission example.

Task max agents skill-1 skill-2 skill-3

1 2 10 0 0
2 2 5 0 6
3 2 0 4 0
4 2 10 0 8
5 2 5 0 0

Table 3: The skill information of agents in example.

Agent skill-1 skill-2 skill-3

1 5 0 2
2 5 0 2
3 0 5 8
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Figure 3: Precedence relation of a small example.

Figure 4: Example of solution representation.

Figure 5: Decoding activity vector to activity list.
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Figure 6: Column definition of resource matrix.

Figure 7: Decoding resource matrix to resource allocation result.

4.3. Population initialization300

Reconnaissance mission scheduling is a very complex optimization problem that involves several
non-linear constraints. This problem contains some non-smooth objective functions and constraints,
which means gradient information is not available. The nonlinearity and multimodality make
reconnaissance mission scheduling difficult to solve. According to Yang et al. (2018); Heidari et al.
(2017), both empirical observations and numerical statistics suggest that a good quality initial305

population tends to get better solutions to the optimization problem. Motivated by the above
reasons, a heuristic initialization algorithm is proposed to generate the initialization population
with good quality and diversity; a serial scheduling generation scheme is adopted. The framework
of the population initialization algorithm is presented in Algorithm 1. When an agent is assigned
to a task, the corresponding values in the resource matrix are generated using Algorithm 2.310

Unlike the traditional multi-mode multi-skill RCPSP, in reconnaissance mission scheduling prob-
lem, the original reconnaissance mission information does not contain a specific skill required for
each task. For each task, only the area of each type of reconnaissance, a maximum processing time,
and the maximum number of agents assigned to the task are given. The minimum skill requirement
means that if the allocated skill is less than the minimum skill requirement, a task’s processing315

time should be more than its longest processing time, which is unacceptable. We need to know
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the exact skill requirement information when using a serial scheduling scheme to avoid allocating
extra resources. Therefore, four different modes are designed to calculate the skill requirement for
each task in population initialization. To generate an individual in the initial population, a specific
mode should be selected from the four different modes:320

Mode 1: Min mode, the skill requirement for each task is specified as the minimum skill
requirement.

Mode 2: Max mode, the skill requirement for each task is calculated as Eq. (19), where the
maximum number of agents that can be assigned to the task and average skill level of reconnaissance
are used.325

skill requirement =
MRj
|L|

·
∑
k∈R ukl

|R|
, l ∈ Lj . (19)

Mode 3: Middle-level mode, the skill requirement for each task is calculated as the average of
Min mode and Max mode.

Mode 4: Random mode, the population initialization method is not used; the resource matrix
is generated randomly.

A resource rule should be selected for the individual when a task is chosen to be allocated with330

agents. The resource rule is used to give a priority value to each available agent. Rank the agents
according to their priority value in descending order. Higher ranked agents have a higher priority
to be assigned to the given task. Three resource rules are introduced in this paper:

Resource rule 1: Rank the available agents according to the transfer time to each agent’s
given task.335

Resource rule 2: Priority value is defined as the sum of skills of an agent which the given task
requires. Assuming the task j is given, the priority value of available agent k can be calculated as:

priority value =
∑
l∈Lj

ukl (20)

Resource rule 3: The priority value of each available agent is randomly generated in the
interval [0, 1].

If an agent k is assigned to perform task j, then a skill rule should be specified. Skill rule is340

used to determine which type of skill agent k should perform. The skill rule gives a priority value to
each type of skill mastered by the agent. The agent should perform the type of skill with a higher
priority value. Two skill rules are involved in this paper.

Skill rule 1: The priority value is based on the relative scarcity of the skill units mastered by
agent and the task’s requirement. Assuming the agent k is assigned to perform task j, the skill345

priority value of agent k can be calculated as:

priority value =
ukl

skill l requirement of task j
, l ∈ Lj . (21)

Skill rule 2: The skill priority value of each available agent is randomly generated from interval
[0, 1].

4.4. Local search procedure

In each iteration, as presented in Step-5 of PS-MOIWO in Section 4.1, after the generated seeds350

are scattered in the search space, a local search procedure is performed to improve the quality
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Algorithm 1: Population Initialization

1 i = 0 (The number of generated individuals)
2 while i < population size do
3 i = i+ 1
4 D = ∅ (Store the task which has been allocated with agents)
5 Select a task requirement mode randomly, calculate the task requirement.
6 if The task requirement mode is not random mode then
7 Randomly generate N numbers from [0, 1] to fill the task vector, translate the task vector

to task list π.
8 t = 0
9 for λ = 1 to N do

10 Let j be the activity in position λ of task list π
11 while j /∈ D do
12 Update the available agent set AA.
13 Randomly select a resource rule and a skill rule.
14 if The agent in AA can provide enough skills to cover the requirement of task j

then
15 Assign the agents to perform task j using the selected resource rule and skill

rule. Using Algorithm 2 to generate the value of the corresponding element in
resource matrix.

16 else
17 Jump out of the loop, set t to the most recent time step when at least one

agent is released.
18 end

19 end

20 end

21 else
22 Randomly generate N numbers from (0, 1) to fill the task vector, translate the task vector

to task list π.
23 All the elements in resource matrix are randomly generated from (0,1)

24 end

25 end

Algorithm 2: Value Generation

input : Agent k is assigned to task j to perform skill l
output: The corresponding value in resource matrix

1 for l∗ ∈ Lj do
2 if l∗ == l then
3 The corresponding value in resource matrix is randomly generated using a Gaussian

Distribution N
(
0.75, 0.052

)
. If the generated value is not in interval (0.50,1), re-sample

again.
4 else
5 The corresponding value in resource matrix is randomly generated using a Gaussian

Distribution N
(
0.25, 0.052

)
. If the generated value is not in the interval (0,0.49),

re-sample again.
6 end

7 end
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of the population. The driving motivation to design a local search procedure is to eliminate the
unreasonable allocation represented by the existing seeds to improve their quality. Because of the
randomness in PS-MOIWO, there may be two kinds of unreasonable allocations in each seed:

Inside Skill Adjustment: Assuming two agents k1, k2 are assigned to the same task to perform355

skill s1 and s2 respectively. If agent k1 masters skill s2 and agent k2 masters skill s1, and the skill
level satisfies uk1s1 < uk2s1 , uk1s2 > uk2s2 , then adjust agent k1 to perform skill s2 and agent k2 to
perform skill s1 to that task.

Left Neighborhood Adjustment: Assuming agent k1 is assigned to perform skill s1 to task
t1, agent k2 is assigned to perform skill s2 to task t2. In the task list, task t1 is next to task t2 and360

t1 is to the left position of t2. If the transfer time for k1 to t1 is longer than that to t2, the transfer
time for k2 to t1 is longer than that to t2, and the the skill level satisfies uk1s1 < uk2s1 , uk1s2 > uk2s2 ,
and t1 is not direct of indirect predecessor of t2. Then, adjust agent k1 to perform skill s2 to task
t2 and agent k2 to perform skill s1 to task t1.

The implementation details of the local search are given in Algorithm 3.365

Algorithm 3: Local Search

input : Seed s before local search
output: Seed s after local search

1 for t ∈ Task List of Seed s do
2 Find the agents set A that can meet the criteria of Inside Skill Adjustment.
3 Conduct Inside skill adjustment for agents in A.
4 if t is not in the first place of the Task List then
5 Find the agents set B that can meet the criteria of Left Neighborhood Adjustment.
6 Conduct Left Neighborhood Adjustment for agents in B.

7 end

8 end

4.5. Constraint handling

Using the solution representation and decoding process in this paper, only 2 types of constraint
violations may occur. One is that the allocated skill for a task is less than the task’s minimum
skill requirement; this type of violation is denoted as Cs. The other is that the number of agents
allocated to a task is more than the maximum number of agents for that task; this type of violation370

is denoted as Cn. RAlj denotes the set of agents allocated to perform skill l in task j. SRminjl can be
calculate using Eq. (22), which represents the minimum requirement of skill l that must be satisfied
for task j. The constraint violation for an individual ~e can be calculated as follows:

SRminjl =
Alj

pmaxj − Γj
(22)

Cs(~e) =
∑
j∈V

∑
l∈L

[max{0, (SRminjl −
∑

k∈RAl
j

ukl)}] (23)

Cn(~e) =
∑
j∈V

∑
l∈L

[max{0, |RAlj | −MRj}] (24)
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4.6. Fitness function

A constraint handing technique which named “self-adaptive penalty” is adopted in this paper,375

in which the penalty term is added to the objective function. The fitness function for each objective
contains two parts: a distance value and a penalty function. To define the fitness function, firstly,
each objective function of each individual ~e is normalized:

f̃i(~e) =
fi(~e)− fmin

i

fmax
i − fmin

i

, i ∈ {1, 2, 3} (25)

where fmini is the minimum value of ith objective function, fmaxi is the maximum value of ith
objective function. The measure of Cs and Cn is the “skill units of the agent” and the “number of380

agent”, respectively. We need to transfer the measure of Cs and Cn to the same. The average skill
units of the agent (denote as au) is used.

au =

∑
k∈R

∑
l∈L ukl

|R|
(26)

For each individual ~e in population, the degree of constraint violation can be normalized as:

C(~e) =
1

2
· Cs(~e) + au · Cn(~e)

max{Cs(~e), au · Cn(~e)}
(27)

Using rf denotes the proportion of feasible individuals in the population:

rf =
number of feasible individual

number of the population
(28)

The distance value for ith (i ∈ {1, 2, 3}) objective function of individual ~e is defined as:385

di (~e) =

{
C (~e) , if rf = 0√
f̃i (~e)

2
+ C (~e)

2
, if rf 6= 0

(29)

The ith (i ∈ {1, 2, 3}) penalty value pni of individual ~e can be calculated by:

pni (~e) = (1− rf )Xi (~e) + rfYi (~e) (30)

where

Xi (~e) =

{
0, if rf = 0
C (~e) , if rf 6= 0

(31)

Yi (~e) =

{
0, if ~e is feasible

f̃i (~e) , if ~e is infeasible
(32)

The fitness of individual ~e for ith (i ∈ {1, 2, 3}) objective in reconnaissance mission scheduling
is the sum of di(~e) and pni(~e).

Fi (~e) = di (~e) + pni (~e) , i ∈ {1, 2, 3} (33)

For the reconnaissance mission scheduling problem, the population is sorted based on 3 fitness390

functions F1, F2, F3 by using the sorting method proposed in the next section.
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4.7. Non-dominated solutions maintaining

The non-dominated sorting method and crowding distance are used to rank the individual in the
proposed PS-MOIWO. Non-dominated sorting is mainly used to sort the solutions in population
according to the Pareto dominance principle, which plays a critical role in the selection operation395

of many multi-objective evolutionary algorithms. A modification of traditional non-dominated
sorting, which names “Efficient Non-Dominated Sort using Non-Dominated Tree (ENS-NDT)” and
proposed in Gustavsson & Syberfeldt (2018), is adopted in PS-MOIWO to accelerate the process
of non-dominated sorting. In ENS-NDT, a novel Non-Dominated Tree structure is modified for
quicker non-domination checks. Compared with the traditional non-dominated sorting method,400

ENS-NDT is more efficient.
For individuals in the same front, to improve the sorted population’s diversity, the improved

crowding distance proposed in Chu & Yu (2018) is incorporated with the PS-MOIWO to prioritize
these individuals. Using the non-dominated sorting method and crowding distance introduced in
this part, we can prioritize all the individuals in a population.405

4.8. Complexity analysis

In this subsection, to make it easier for readers, we redefine the notations and make them
consistent with other papers. Using N to denote the max population size (Pmax) and M denotes
the number of objectives.

Space Complexity: During the operation of PS-MOIWO, it uses one population O(N) to410

store the current solutions and another population to store non-dominated solutions O(N) in the
worst case of each iteration. The size of the population is determined when the first iteration is
finished. It will not change during the processing of the algorithm.

Time Complexity: After the initialization, the process of generating a new colony of weeds
needs O(N) time. Scattering the seeds in the search space and the local search need O(N) time.415

In the evaluation of the population, the major computational cost is the non-dominated sorting.
According to Gustavsson & Syberfeldt (2018), the non-dominated sorting method used in this paper
costs O(MN2) time. So the time complexity of PS-MOIWO is O(MN2).

5. Computational experiment

In this section, the computational experiment is conducted to assess the performance of the420

proposed algorithm. All algorithms mentioned in this section are coded in the C++ programming
language. All experiments are conducted on a machine running an Intel Core i5-7400 3.4GHz
CPU with 16GB of RAM. We firstly give an introduction to the comparison algorithms and the
performance metrics. Secondly, we present some parameters used to describe the test instance and
the way to generate the test instance. Then the parameters of each algorithm are determined by425

using the Taguchi method. We show and analyze the result of the computational experiment at
last.

5.1. Comparison algorithm

To the best of the author’s knowledge, there is no benchmark or specially designed algorithm for
reconnaissance mission scheduling problems in the state of the art literature. Therefore, four well-430

known and effective multi-objective optimization algorithms are used to compare with the proposed
PS-MOIWO.
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• NSGA-II(IM) (Blank et al., 2017), which presents an improved version of NSGA-II with sev-
eral mechanisms and operators. We test these mechanisms and operators with the reconnais-
sance mission scheduling problem. Firstly, the same TSP solver used in (Blank et al., 2017)435

is adopted to generate the task list in the initial population for our problem. Then, we view
each task’s requirement as the capacity of a knapsack and each reconnaissance agent as the
goods, select a KNP operator to make resource allocation. Thirdly, the local search proposed
in Blank et al. (2017) is conducted for each individual in NSGA-II(IM), and the tournament
selection is also used. We combine the operators discussed in Blank et al. (2017) and test their440

performance on our problem. The best combination is 2OPT-EDGE and PACK-RANDOM.
The best operator combination is adopted with NSGA-II(IM) in our experiment.

• NTGA (Laszczyk & Myszkowski, 2019), which focuses on solving multi-objective multi-skill
RCPSP. In NTGA, a modified selection operator is presented in combination with classical
NSGA-II, and a clone prevention method is used to increase the spread of resulting sets.445

• MOPSO (Coello & Lechuga, 2002) is another well-known multi-objective optimization algo-
rithm in which solutions are generated randomly, and then the position of the solution is
updated to improve its quality. Non-dominated solutions will be stored in a limited archive
called repository. The newly generated solutions will be added to this repository. Then, the
dominated solutions will be removed from the repository.450

• MOEA/D (Zhang & Li, 2007), which provides an excellent algorithmic framework of evo-
lutionary multi-objective optimization. MOEA/D decomposes the target MOP into several
scalar optimization problems and then applies the EA to optimize these subproblems simul-
taneously. This algorithm has been successfully applied in many engineering applications.

5.2. Performance metric455

Because the “true Pareto front” is hard to obtain in multi-objective optimization, we use the
data obtained by all algorithms to approximate the “true Pareto front.” The Pareto front obtained
by an algorithm is denoted as “approximate Pareto front”. To analyze the performance of the
proposed algorithm and comparison algorithms, we use the following popular performance metrics.

Set Coverage (C-metric): This performance metric is proposed in Zitzler & Thiele (1998).460

Given to 2 pareto fronts P and Q, set coverage (C-metric) C(P,Q) is defined by the percentage of
the solutions in P which dominated by at least one solution in Q. Using |P | to represent the size
of pareto front P , the definition of C(P,Q) is shown in Eq. (34)

C(P,Q) =
|{q ∈ Q|∃p ∈ P : p dominates q}|

|Q|
(34)

In this paper, we consider the true Pareto front P ∗ obtained by all the algorithms and an
approximate Pareto front P obtained by one algorithm, using C(P ∗, P ) to represent the set coverage465

of the corresponding algorithm. Smaller C(P ∗, P ) is better.
Spacing (SP): The value of SP measures the distribution of the non-dominated solutions

along with the approximate Pareto front obtained by an algorithm. SP can be calculated as follows
(Schott, 1995):

SP =

√√√√ 1

(n′ − 1)d̄

n′∑
i=1

(
di − d̄

)2
(35)
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where n′ is the number of non-dominated solutions obtained by the algorithms, di denotes the470

Euclidean distance between 2 nearest non-dominated solutions of each front, and d̄ is the average
of that distance. The algorithm with larger SP is better.

Inverted Generational Distance (IGD): IGD is a measure of both the convergence and
diversity of the solutions. It represents the average distance of the given set of non-dominated475

solutions to the true Pareto front. IGD can be calculated as follows (Zhang & Li, 2007):

IGD =

∑
i∈P D (i, P ∗)

|P ∗|
(36)

where D (i, P ∗) represents the minimum Euclidean distance between point i (which belongs to the
approximate Pareto front P ) and the points in true Pareto front P ∗. The algorithm with smaller
IGD is better.

Hypervolume (HV)(Zitzler & Thiele, 1998): Another name of hypervolume is known as480

S-metric. It is a metric that measures both closeness and diversity (Audet et al., 2018). The
hypervolume is defined as the volume of the space in the objective space dominated by the approx-
imate Pareto front P and delimited from above by a reference point r ∈ Rn, the way to calculate
hypervolume is shown below :

HV (P, r) = λm(
⋃
x∈P

[x; r]) (37)

where xi is an individual in approximate Pareto front P , λm is the m-dimensional Lebesgue measure.485

In this paper, the reconnaissance scheduling problem has 3 objectives, so we set m = 3. The
reference point adopted here is (max f1,max f2,max f3). The Pareto front P with higher value of
HV is better.

5.3. Test instance

As the reconnaissance mission scheduling problem is modeled as multi-mode multi-skill RCPSP,490

some common parameters usually used in traditional project scheduling problems are introduced to
describe the difference between test instances: (1) maxSkill: the maximum types of skill a resource
can master. (2) nStart: the maximum number of tasks that are the direct successor of the start
task. (3) nFinish: the maximum number of tasks that are the direct predecessor of the end task.
(4) MaxPred: maximum number of predecessors for each task. (5) MaxSucc: maximum number of495

successors for each task. (6) NC: the network complexity, which is defined by the average number
of successors of each task; (7) nAct: the number of tasks in a project. (8) K: The number of agents
(resource). (9) |L|: The number of skills.

Some new parameters are proposed to describe the feature of multi-skill agents. MSU : The
maximum skill unit of each skill l that an agent can master. TSl: The total skill supply of skill l.500

Some parameters are used in other papers, but they are modified to fit the reconnaissance mission
scheduling problem. Skill factor (SF ) is used to describe the relationship between the number of
skill types required to perform a task |Lj | and total number of skill types |L|, |Lj | = d|L|×SF e. By
introducing parameter Resource Strength RSSl = TSl∑

j∈V SRmin
jl

for each skill l ∈ L, we can control

the total skill requirement of the reconnaissance mission.505

As there is no benchmark for reconnaissance mission scheduling problem, based on the statistic
data of reconnaissance mission in the real world, we make some extensions of the instance generator
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proposed by Almeida et al. (2015) to generate the test instances. Firstly, use the resource generation
algorithm in Almeida et al. (2015) to generate reconnaissance resources. Since the resource in the
reconnaissance mission is the agent, to fit the character of the reconnaissance agent, the skill level510

of each agent is re-sampled by a Gaussian Distribution. In each skill re-sample process, the mean
equals the value generated by the resource generation algorithm in Almeida et al. (2015), and the
standard deviation is set to 0.9. Then by executing “activity generation” algorithm in Almeida
et al. (2015), the precedence network G = (V,E), the longest processing time pmaxj for each task

and the minimum skill requirement SRminjl are obtained. According to statistics, the reconnaissance515

task’s setup time is usually between 0.12 to 0.18 times the total execution time. So the setup time
of a task is generate by β × pmaxj , β is randomly selected from [0.1, 0.2]. The task area Alj can
be calculated using Eq. (22). An interval defined by [NCR,MCR] is introduced to specify the
maximum number of resources working in task area Alj , α is randomly selected from [NCR,MCR],

MRj =
Al

j

maxk∈Rukl
× α. Ten test instances are generated to test the algorithms’ performance. The520

value of nStart, nFinish, maxSucc, maxPred for instance 1-5 are set to 4, and for instance 6-10
are set to 6. The detailed information about other parameters for the instances is shown in Table 4.
To verify the performance of the algorithm comprehensively, the complexity of instance 1 to 10
increases gradually.

Table 4: Instance Parameters.

Name nAct K L NC SF RSS TSl NCR MCR

instance-1 20 20 3 2.0 0.75 [0.4, 0.5, 0.5] [1500, 2000, 1600] 0.2 0.5
instance-2 25 20 3 2.0 0.75 [0.5, 0.4, 0.4] [1600, 2100, 1500] 0.2 0.5
instance-3 30 25 3 2.0 0.75 [0.4, 0.4, 0.4] [1850, 2500, 1900] 0.2 0.5
instance-4 35 30 3 2.5 0.75 [0.3, 0.4, 0.4] [2250, 3100, 2400] 0.2 0.5
instance-5 40 30 3 2.5 0.75 [0.3, 0.3, 0.4] [2300, 2900, 2500] 0.2 0.5
instance-6 45 35 3 2.5 0.75 [0.3, 0.4, 0.3] [2650, 3600, 2800] 0.25 0.55
instance-7 55 40 3 5.0 0.75 [0.3, 0.3, 0.3] [2900, 3600, 3200] 0.25 0.55
instance-8 60 40 3 3.0 0.75 [0.4, 0.4, 0.4] [3000, 4100, 3100] 0.25 0.55
instance-9 65 45 3 3.5 0.75 [0.3, 0.4, 0.4] [3250, 4050, 3300] 0.25 0.55
instance-10 70 45 3 3.5 0.75 [0.3, 0.3, 0.4] [3350, 4600, 3200] 0.25 0.55

5.4. Parameters tuning525

In order to properly set the parameters, Taguchi method (Taguchi, 1986) is applied in this
paper. Taguchi method uses orthogonal arrays to test a group of factors. The factors that can
influence an algorithm’s performance can be divided into 2 categories: (1) signal factors; (2) noise
factors. Taguchi method attempts to find the best level combination of signal factors to minimize
the noise factors’ impact in response. The smaller-the-better type of signal to noise ratio (S/N) is530

used in this paper:

S/N = −10× log

(
S
(
Y 2
)

n

)
(38)

where Y denotes the response, and n denotes the number of orthogonal arrays. S(Y 2) represents
the sum of responses under a specific combination of signal factors. To consider the convergence
and the diversity at the same time, we adopt a metric called combinatorial ratio (C.R.) proposed in
Ding et al. (2018) as the response variable. C.R. uses the IGD and Hypervolume, which are defined535

in Section 5.2. C.R. can be calculated as:

C.R. =
IGD

HV
(39)
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Six levels of each factor are considered. The levels of the parameters for each algorithm are shown in
Table 5. For comparison algorithms, PS denotes the population size, NOG denotes the maximum
number of generations, CP denotes the crossover probability, MP denotes the mutation probability,
TS denotes the tournament size, NE denotes the neighborhood size, other parameters are of the540

same meaning as in its corresponding paper. For the proposed algorithm, the definitions of the
parameters are the same as presented in Section 4.1. To make a fair comparison, the Function
Evaluation Number (FEN) is set to 120000 for each level of parameters. For the comparison
algorithm, the population size remains the same from the beginning to the end, so the number of
generations can be calculated as NOG = FEN

PS . For the proposed algorithm, the initial population545

size P0 will increase to the maximum population size Pmax in a few generations. Given a specific
FEN, it is hard to compute the exact value of NOG of the proposed method, so we use the maximum
population size (NOG = FEN

Pmax
) to make sure that the actual function evaluation number is always

no larger than the comparison algorithms. The L48 design is selected for NSGA-II(IM), NGTA, and
MOEA/D. The L56 design is selected for MOPSO. The L62 design is selected for PS-MOIWO. Test550

each algorithm with instance-5. The parameter level with the maximum mean of S/N is chosen as
the optimal level. The optimal values of the parameters for each algorithm are presented in Table 6.

Table 5: Algorithm parameter ranges along with their levels.

Algorithm Parameter
Parameter level

Level1 Level2 Level3 Level4 Level5 Level6

PS-MOIWO NOG 1200 1000 705 600 521 480
P0 70 90 120 150 180 200
Pmax 100 120 170 200 230 250
σinitial 0.1 0.15 0.2 0.25 0.3 0.35
σfinal 0.01 0.02 0.03 0.04 0.05 0.06
Smin 1 2 3 4 5 6
Smax 2 4 6 8 10 12
n 1 2 3 4 5 6

NTGA NOG 1200 1000 705 600 521 480
PS 100 120 170 200 230 250
CP 0.4 0.5 0.6 0.7 0.8 0.9
MP 0.05 0.1 0.15 0.2 0.25 0.30
TS 4 5 6 7 8 9

NSGA-II(IM) NOG 1200 1000 705 600 521 480
PS 100 120 170 200 230 250
CP 0.4 0.5 0.6 0.7 0.8 0.9
MP 0.05 0.1 0.15 0.2 0.25 0.30
TS 4 5 6 7 8 9

MOPSO NOG 1200 1000 705 600 521 480
PS 100 120 170 200 230 250
c1 1.0 1.25 1.50 1.75 2.0 2.25
c2 1.0 1.5 2.0 2.25 2.5 2.75
w 0.4 0.5 0.6 0.7 0.8 0.9

REP 50 70 80 90 110 130
G 6 7 8 9 10 11

MOEA/D NOG 1200 1000 705 600 521 480
PS 100 120 170 200 230 250
CP 0.4 0.5 0.6 0.7 0.8 0.9
MP 0.05 0.1 0.15 0.2 0.25 0.30
NE 3 4 5 6 7 8
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Table 6: Optimal value of the parameters.

Algorithm Parameter Optimal value

PS-MOIWO NOG 600
P0 150
Pmax 200
σinitial 0.2
σfinal 0.04
Smin 2
Smax 7
n 4

NTGA NOG 705
PS 170
CP 0.6
MP 0.1
TS 8

NSGA-II(IM) NOG 1000
PS 120
CP 0.6
MP 0.25
TS 7

MOPSO NOG 521
PS 230
c1 1.75
c2 2.25
w 0.5

REP 70
G 8

MOEA/D NOG 600
PS 200
CP 0.7
MP 0.15
NE 7
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5.5. Performance evaluation

In this section, the performance comparison of the algorithms is presented. Firstly, we use the
metrics defined in Section 5.2 to compare the algorithms. All the results presented are obtained by555

executing 20 independent runs of each algorithm on each instance. From the numeric point of view,
the average and standard deviation values of C-metric, SP, IGD and HV are presented in Tables 7
to 10. Wilcoxon’s rank sum test at a 5% significance level is conducted to test the significance of the
difference between the mean metric values yielded by the proposed algorithm and the comparison
algorithms. The symbols †, §, and ≈ indicate that the performance of the proposed PS-MOIWO560

algorithm is better than, worse than, and similar to that of the comparison algorithm according to
Wilcoxon’s rank sum test. In each table, the number in parentheses is the standard deviation; the
bold data represent the best value in a row. Figure 12 shows the Pareto fronts of a single run of
each algorithm on 3 instances.

Concerning the C-metric values in Table 7, the proposed algorithm PS-MOIWO has the best565

performance. It obtains the best value among all the 10 instances. To show the relative relations
between the algorithms better, the mean value of the C-metric of all algorithms for each test instance
is plotted in Figure 8. The solutions obtained by PS-MOIWO generally dominate above 80% of those
obtained by the competitors, which indicates a significant advantage over the other competitors on
all the test instances. NGTA performs better than NSGA-II(IM), MOPSP, and MOEA/D. MOPSO570

and MOEA/D have similar performance in C-metric. Neither of them performs significantly better
than the other.

Secondly, we use Spacing (SP) to compare the algorithms. The value of SP measures the
distribution and diversity of the solutions. Table 8 presents the details of SP value on each instance.
Figure 9 provides a comprehensive view of the mean value of SP for each instance. In general, the575

proposed PS-MOIWO obtains 2 best values among the 10 instances. MOEA/D obtains 3 best
solutions. NSGA-II(IM) and MOPSO obtain 2 best solutions, respectively. NGTA obtains only 1
best solution. As we can see from Table 8 and Figure 9, there is no significant difference in SP
between all the algorithms. Generally, the algorithm with higher quality Pareto front trends to get
a lower value of SP.580

About the values of Inverted Generational Distance (IGD) in Table 9, the proposed algorithm
PS-MOIWO obtains all the best solutions among all the 10 instances. In other words, PS-MOIWO
obtains better results than the other competitors. Figure 11 presents the mean value of IGD
for each test instance. For PS-MOIWO, a clear advantage can be seen from Figure 11 over the
other three algorithms. As illustrated in Section 5.3, the complexity of instance 1 to 10 increases585

gradually. According to Figure 11, we can conclude that: with the increase of the complexity of the
instance, the advantage of PS-MOIWO increases gradually in general. This is mainly because the
PS-MOIWO makes better use of the problem information. NGTA has the second-best performance
on IGD.

Finally, we compare the solutions obtained by each algorithm by using the Hypervolume (HV).590

HV reflects both the convergence and diversity of the solutions at the same time. Table 8 shows the
details of the HV value for each instance. Figure 9 gives a direct view of the mean value of HV for
each instance. The proposed algorithm PS-MOIWO obtains 6 of the best solutions among all 10
instances, which shows that it has the best performance. NGTA and NSGA-II(IM) obtain 2 best
solutions, respectively. NGTA obtains 4 solutions that are worse than PS-MOIWO but close to it,595

and NSGA-II(IM) obtains 3 solutions close to PS-MOIWO. Generally, NGTA has the second-best
performance on HV. MOPSO and MOEA/D do not obtain any best solution.

Moreover, in order to show the superiority of PS-MOIWO more clearly, we plot the non-
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dominated solutions of a single run for all the algorithms on instance-3,instance-6, and instance-8.
In each instance, two cube regions represented by two different colors are enlarged to show more600

information. The graphic representations of their obtained non-dominated solutions are shown in
Figure 12. It is apparent in Figure 12 that PS-MOIWO obtains higher quality non-dominated
solutions than the other competitors.

Furthermore, the result of convergence analysis on a random single run of all algorithms is
presented in Figure 13. In Figure 13, we show the convergence curve of HV for the 10 instances.605

Obviously, we can see that all five algorithms show good convergence in terms of HV but fall
into slight degradation occasionally. This is most probably because it is affected by the failure
to maintain the diversity of the solutions. PS-MOIWO has the best HV value in the beginning
of the iteration in most instances. This is mainly because the proposed population initialization
algorithm can make better use of the problem information to generate a higher quality initial610

population. Nevertheless, PS-MOIWO obtains high-quality Pareto fronts and good convergence.
In summary, we have evaluated the performance of the proposed algorithm PS-MOIWO with

the other four multi-objective optimization algorithms. Four performance metrics have been intro-
duced for the evaluation of the solution quality. Regarding the Set Coverage and Inverted General
Distance, PS-MOIWO outperforms the competitors, which shows that the solutions obtained by615

PS-MOIWO have the highest quality. Considering that the PS-MOIWO has the highest quality
Pareto front, it also shows good performance on SP and HV. The convergence analysis clearly
shows that PS-MOIWO attains a fast convergence with high-quality solutions. The reasons why
PS-MOIWO is effective can be concluded below:

(1) The framework of the PS-MOIWO algorithm is designed specifically to fit the nature of the620

reconnaissance mission scheduling problem while other algorithms are not. The appropriate
solution representation scheme and the specially designed population initialization algorithm
effectively obtain a high-quality population.

(2) The proposed constraint handling technique can tackle the objective function and the con-
straints simultaneously, which helps to get better solutions in the same number of iterations.625

The proper design of the local search method improves the exploration ability of the proposed
algorithm.
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Table 7: Performance comparison of the algorithms from the view point of Set Coverage (C-metric).

PS-MOIWO NTGA NSGA-II(IM) MOPSO MOEA/D

instance-1 0.275(0.019) 0.864(0.103)† 0.842(0.086)† 0.865(0.095)† 0.906(0.071)†
instance-2 0.180(0.012) 0.850(0.053)† 0.918(0.092)† 0.862(0.068)† 0.929(0.094)†
instance-3 0.214(0.021) 0.841(0.067)† 0.915(0.089)† 0.826(0.067)† 0.917(0.086)†
instance-4 0.041(0.003) 0.884(0.047)† 0.892(0.049)† 0.886(0.061)† 0.934(0.079)†
instance-5 0.120(0.011) 0.891(0.054)† 0.906(0.053)† 0.901(0.077)† 0.902(0.061)†
instance-6 0.117(0.013) 0.853(0.070)† 0.872(0.102)† 0.918(0.072)† 0.898(0.086)†
instance-7 0.105(0.012) 0.867(0.063)† 0.878(0.058)† 0.930(0.086)† 0.885(0.084)†
instance-8 0.091(0.011) 0.934(0.054)† 0.874(0.102)† 0.934(0.057)† 0.937(0.106)†
instance-9 0.055(0.005) 0.917(0.087)† 0.867(0.078)† 0.939(0.051)† 0.949(0.074)†
instance-10 0.130(0.008) 0.929(0.072)† 0.875(0.062)† 0.914(0.061)† 0.924(0.103)†
†/§/≈ – 10/0/0 10/0/0 10/0/0 10/0/0
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Figure 8: Mean value of C-metric with respect to test instance.
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Table 8: Performance comparison of the algorithms from the view point of Spacing (SP).

PS-MOIWO NTGA NSGA-II(IM) MOPSO MOEA/D

instance-1 4.399(0.457) 4.549(0.491)≈ 5.107(0.480)§ 4.604(0.525)≈ 5.155(0.284)§
instance-2 5.131(0.590) 4.983(0.398)≈ 5.061(0.516)≈ 4.739(0.554)† 5.110(0.255)≈
instance-3 5.367(0.558) 5.376(0.349)≈ 5.446(0.654)≈ 5.380(0.581)≈ 5.761(0.622)§
instance-4 6.132(0.515) 6.236(0.524)≈ 6.152(0.455)≈ 7.109(0.691)§ 5.697(0.581)†
instance-5 8.136(0.928) 8.021(0.786)≈ 8.875(0.862)§ 8.851(0.858)§ 8.595(1.014)≈
instance-6 8.051(0.749) 8.081(0.743)≈ 9.306(0.568)§ 8.582(0.712)§ 8.993(1.074)§
instance-7 8.659(0.892) 8.464(0.863)≈ 8.151(0.562)≈ 8.388(0.596)≈ 8.598(0.464)≈
instance-8 10.750(0.582) 11.375(0.660)≈ 10.385(0.769)≈ 10.620(1.126)≈ 11.255(0.642)≈
instance-9 11.208(0.572) 9.553(0.764)† 11.666(0.898)≈ 10.525(1.158)† 12.449(0.946)§
instance-10 9.125(0.547) 9.654(0.927)≈ 11.252(0.776)§ 11.594(0.638)§ 10.797(0.723)§
†/§/≈ – 1/0/9 0/4/6 2/4/4 1/5/4
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Figure 9: Mean value of SP with respect to test instance.

27



Table 9: Performance comparison of the algorithms from the view point of Inverted Generational Distance (IGD).

PS-MOIWO NTGA NSGA-II(IM) MOPSO MOEA/D

instance-1 52.986(4.292) 62.947(4.973)† 55.179(3.531)≈ 60.059(7.027)† 69.570(5.566)†
instance-2 54.445(6.207) 71.347(7.420)† 99.146(9.221)† 61.594(7.330)† 95.344(5.722)†
instance-3 45.899(3.718) 64.440(7.024)† 59.355(6.826)† 81.292(7.235)† 87.066(6.791)†
instance-4 73.038(4.528) 105.566(6.017)† 118.002(10.148)† 113.988(12.197)† 129.886(11.694)†
instance-5 102.661(8.213) 145.025(10.877)† 155.786(13.865)† 176.434(10.057)† 171.966(8.942)†
instance-6 100.542(9.853) 158.664(9.837)† 169.124(19.957)† 198.304(11.105)† 185.431(16.503)†
instance-7 130.992(10.741) 183.558(11.197)† 211.029(20.259)† 235.779(23.578)† 224.224(13.678)†
instance-8 171.284(11.647) 324.828(25.012)† 336.060(18.483)† 387.595(37.209)† 368.696(20.647)†
instance-9 168.985(17.574) 357.954(37.227)† 353.282(20.490)† 395.941(44.741)† 389.503(30.771)†
instance-10 209.609(21.170) 411.913(20.596)† 403.767(25.034)† 495.923(56.535)† 517.387(38.804)†
†/§/≈ – 10/0/0 9/0/1 10/0/0 10/0/0
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Figure 10: Mean value of IGD with respect to test instance.
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Table 10: Performance comparison of the algorithms from the view point of Hypervolume (HV).

PS-MOIWO NTGA NSGA-II(IM) MOPSO MOEA/D

instance-1 3.83e+13(3.14e+12) 3.75e+13(4.39e+12)≈ 3.67e+13(3.37e+12)≈ 2.90e+13(2.84e+12)† 3.03e+13(2.58e+12)†
instance-2 4.41e+13(2.56e+12) 4.57e+13(2.97e+12)≈ 4.04e+13(3.59e+12)† 3.10e+13(2.61e+12)† 2.70e+13(1.87e+12)†
instance-3 3.09e+13(2.56e+12) 2.41e+13(1.23e+12)† 2.79e+13(2.20e+12)† 2.15e+13(1.59e+12)† 2.29e+13(1.33e+12)†
instance-4 5.82e+13(6.41e+12) 5.47e+13(2.96e+12)† 3.99e+13(4.35e+12)† 5.68e+13(6.08e+12)≈ 4.33e+13(2.73e+12)†
instance-5 1.49e+14(1.45e+13) 1.23e+14(6.52e+12)† 1.29e+14(9.39e+12)† 1.16e+14(6.84e+12)† 1.27e+14(1.13e+13)†
instance-6 2.24e+14(1.86e+13) 1.77e+14(1.73e+13)† 2.36e+14(2.17e+13)≈ 2.13e+14(1.70e+13)≈ 1.84e+14(1.60e+13)†
instance-7 3.74e+14(2.88e+13) 3.64e+14(3.35e+13)≈ 4.01e+14(4.69e+13)§ 3.44e+14(3.96e+13)† 3.69e+14(1.96e+13)≈
instance-8 1.42e+15(1.25e+14) 1.23e+15(8.09e+13)† 1.17e+15(1.39e+14)† 1.07e+15(1.24e+14)† 1.40e+15(1.02e+14)≈
instance-9 3.56e+15(3.24e+14) 3.66e+15(4.17e+14)≈ 3.57e+15(4.03e+14)≈ 3.21e+15(3.34e+14)† 3.55e+15(2.17e+14)≈
instance-10 2.34e+15(1.94e+14) 1.79e+15(9.13e+13)† 2.00e+15(1.78e+14)† 1.38e+15(9.37e+13)† 2.03e+15(1.68e+14)†
†/§/≈ – 6/0/4 6/1/3 8/0/2 7/0/3
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Figure 11: Mean value of HV with respect to test instance.
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Figure 12: Non-dominated solutions of a single run of all the algorithms for each instance.
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Figure 13: Convergence analysis with Hypervolume of a single run of all the algorithms for each instance.
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6. Conclusion

The multi-agent system reconnaissance mission scheduling problem is investigated in this paper.
The problem is modeled as an extension of Multi-Mode Multi-Skill Resource-Constrained Project630

Scheduling Problem. The mode information of the reconnaissance mission is not known in advance.
The existing algorithms need the exact mode information to work, which can not fit the reconnais-
sance mission planning problem’s characteristics. Even though we know the exact mode information
in advance, each agent masters different skill levels, using the traditional method is ineffective. To
deal with the reconnaissance mission planning problem, the PS-MOIWO is proposed in this paper.635

A new solution representation scheme and the corresponding initialization method are designed. A
local search procedure and a self-adaptive penalty-based constraint handling method are proposed
to improve the population’s quality using the problem-specific knowledge. We perform diverse com-
parisons to validate the proposed algorithm. The results show that PS-MOIWO has competitive
performance in dealing with reconnaissance mission scheduling problems.640

Our future research plan includes the following two aspects: (1) As multi-objective optimiza-
tion is always time-consuming, we will try to accelerate the proposed algorithm using the parallel
computing method. (2) Accidents may occur in the process of performing a reconnaissance mission.
The reactive planning method for reconnaissance missions needs to be studied. The method that
can obtain a robust baseline schedule is another way to deal with such accidents or disruptions in645

reconnaissance missions.
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Lisboa-Centro de Matemática, Aplicações Fundamentais e Investigação Operacional , .

Almeida, B. F., Correia, I., & Saldanha-da Gama, F. (2016). Priority-based heuristics for the
multi-skill resource constrained project scheduling problem. Expert Systems with Applications,
57 , 91–103.

Almeida, B. F., Correia, I., & Saldanha-da Gama, F. (2019). Modeling frameworks for the multi-660

skill resource-constrained project scheduling problem: a theoretical and empirical comparison.
International Transactions in Operational Research, 26 , 946–967.

Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2018). Performance indicators
in multiobjective optimization. Optimization Online, .
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