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Introduction
I Train timetable rescheduling (TTR) is con-

ducted when predefined train operations are
affected by inevitable emergencies, e.g.,
train failure, natural disasters, etc.

I There are many uncertain features in actual
train operations, which account for an effi-
cient TTR method for increasing the train op-
eration efficiency.

I Most of the studies consider the parameters
for the emergencies are deterministic.

I This paper present a conditional value-at-
risk (CVaR) based TTR model under un-
certainty with stochastic disruption scenar-
ios. Model transformation and approxima-
tion methods are applied to speed up the
computation and provide an efficient upper
bound.

Assumptions
I Disruption considered is a complete section

blockage between two adjacent stations.
I There is only one disruption, whose duration

is a stochastic variable with known distribu-
tion.

I Trains are allowed to arrive early at the sta-
tion, but they should not depart early.

Objective Function
The total arrival and departure cost for all trains
under scenario s is defined as:
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where I denotes the set of trains. x =
[xs

ij (s), xe
ij (s)], q = [qilk (s)] and y = [yij (s)] are

the rescheduled time, order, and stop indicator.
For S scenarios, the corresponding CVaR value
is calculated by [1]:
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where ps is the probability of scenario s, α ∈ R.
S denotes the set of scenarios.

Constraints
I Dwell Time Constraints
I Running Time Constraints
I Headway Constraints
I Close-to-Favorite-Schedule Constraints
I Initial Rescheduling Time Constraints
I Arrival Time Constraints
I Traversing Order Constraints: For two adja-

cent trains, either one can traverse at a sec-
tion before the other.

qilk (s)+qlik (s) = 1 (3)
qilk∗ (s = 1) = · · · = qilk∗ (s = S) (4)

where qilk∗ (s) is a first-stage decision vari-
able remains the same under different sce-
narios. In the second stage, the resched-
uled arrival, departure time, traversing order
in other sections, and train stop indicator are
decided when the random quantities can be
observed.

I Train Stop Constraints

CVaR-based TTR model and Its Reformulations
I The CVaR-based TTR model is formulated to minimize the CVaR of the rescheduling cost (2)

under several constraints, that is: min CVaRβ(D(x, q, y, s)). Since there are continuous real
variables x, 0-1 variables (q, y), and nonlinear terms (minimax function) in (2), the proposed
CVaR-based TTR model belongs to mixed-integer nonlinear programming (MINLP).

I Model Reformulation
I Linearization. The nonlinear terms (minimax function) are tackled by introducing auxiliary

variables.
I Scenario Reduction. When β is greater than 0, the corresponding scenarios related with β

are used for calculation, rather than all the scenarios. Therefore, a scenario reduction strategy
is proposed to speed up the model according to this problem-specific knowledge.

I Order Scenario Reduction. Another scenario reduction strategy (order scenario reduction)
is proposed by eliminating the second-stage decision variable, traversing order q, under dif-
ferent scenarios to a first-stage decision variable. The reformulated model is a CVaR-based
TTR model with scenario-order-free (CVaR-TTR-SOF). As a result, the traversing order is not
related to scenarios. As the searching space is decreased, the CVaR-TTR-SOF provides an
upper bound for CVaR-TTR.

I Suppose both the scenario reduction strategy and order scenario reduction are con-
sidered. In that case, a reformulated CVaR-based TTR model with scenario reduction and
scenario-order-free (CVaR-TTR-SR-SOF) is proposed. It provides the same upper bound
for CVaR-TTR with a smaller searching space.

Computational Experiments
I The Beijing-–Tianjin intercity railway line

from Beijing South to Tianjin is considered.
It is a double-track railway. There are al-
together 6 stations and 5 sections. 23
trains downstream from 6:00 to 9:00 are
considered for the railway timetable. Some
trains are heading to another railway corri-
dor at Nancang. To distinguish trains in the
timetable, the line width of trains is set dif-
ferently. Two test instances are generated
based on the time, place, and duration of the
disruption under five scenarios.

I The time limit for GUROBI is set to 10 min
for TTR. Table 1 shows the objective value
and running time for CVaR-TTR, CVaR-TTR-
SOF (-SOF), and CVaR-TTR-SR-SOF (-SR-
SOF) under two test instances. Accord-
ing to the table, the upper bound models (-
SOF and -SR-SOF) can provide results effi-
ciently with less time than CVaR-TTR. Mean-
while, the objective values for -SR-SOF are
the same as those of -SR, and the running
time decreases with the increase of the con-
fidence level β. It is because the number
of effective scenarios decreases with the in-
crease of β. By reducing the number of
scenarios, the number of variables and
constraints in the model have been sig-
nificantly reduced.

I For instance No. 1, the CVaR-TTR model
cannot be solved within 10 min when 0 ≤
β ≤ 0.6. The corresponding -SR and SR-
SOF models can be solved within 1–2 min
for all instances. For instance No. 2, there is
a difference between the upper bound model
and the original model when β = 0.6. It
shows that the traversing orders at undis-
rupted sections vary with different scenar-
ios. The rescheduled timetables for instance
No. 2 with β = 0.6 and disruption dura-
tion equals 33 min are shown in Figs. 1–
2 with red lines for adjusted arrival and de-
parture times. The objective value of the
-SR-SOF model is 0.43% worse than that
of CVaR-TTR, whereas the running time
is 12.7 times better, which shows the ef-
fectiveness of -SR-SOF.

Figures and Tables

Fig. 1: Rescheduled timetable by CVaR-TTR with a
duration of disruption equals 33 min when β = 0.6 for
instance No. 2.

Fig. 2: Rescheduled timetable by CVaR-TTR-SR-
SOF with a duration of disruption equals 33 min
when β = 0.6 for instance No. 2.

No. β CVaR-TTR -SOF -SR-SOF
1 0 933.60† 933.60/58.62 –

0.2 970.25† 970.25/89.96 970.25/49.51
0.4 1011.33† 1011.33/103.06 1011.33/46.34
0.6 1060.00† 1041.50/95.51 1041.50/15.27
0.8 1092.00/126.23 1092.00/101.48 1092.00/12.95

2 0 644.80/193.85 644.80/11.50 –
0.2 681.75/75.34 681.75/10.99 681.75/9.75
0.4 731.68/118.54 731.68/16.44 731.68/12.18
0.6 806.50/102.09 810.00/28.97 810.00/8.04
0.8 855.00/36.43 855.00/37.76 855.00/7.29

†
GUROBI stopped after running for 10 min.

– The scenario reduction strategy is not applied for β = 0.

Table 1: Results for different models (objective
value/running time (s)).

Conclusion
A two-stage stochastic programming model is proposed to
minimize the CVaR of the total arrival and departure cost.
The model is linearized to a MILP model and effectively
transformed into several models. The problem can be effi-
ciently solved with optimal solutions and a few upper bound
solutions.
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