

An Under-Approximation for the Robust Uncertain Two-Level Cooperative Set Covering Problem

Shuxin Ding, Qi Zhang, Zhiming Yuan

Signal and Communication Research Institute, China Academy of Railway Sciences Corporation Limited

2020 59th IEEE Conference on Decision and Control (CDC) December 14, 2020

Outline

- Introduction
- Model Formulation
- Computational Experiments

An Under-Approximation for the Robust Uncertain Two-Level Cooperative Set Covering Problem

Introduction

Set Covering Problem

- Minimum the total cost of cover
- Selection of a subset of location sites
- Cover a set of demand nodes
- NP-complete
- Application in facility location problems
 - locate emergency service facilities
 - node deployment

$$\min \sum_{j \in \mathcal{J}} c_j x_j$$
s.t.
$$\sum_{j \in \mathcal{J}} a_{ij} x_j \ge 1 \qquad \forall i \in \mathcal{I}$$

$$x_j \in \{0, 1\} \qquad \forall j \in \mathcal{J}$$

- a set \mathcal{I} of m demand nodes
- a set \mathcal{J} of n potential facility location sites
- 0-1 matrix A indicates whether a location *j* is able to cover a demand node *i*

Literature Review

- Probabilistic set covering problem Beraldi and Ruszczynski (2002)
- Two-level facility location problem Aardal et al. (1996)
- Joint resource allocation problem

Xin et al. (2018), Wang et al. (2019), Xu et al. (2020)

• Robust set covering problem

Pereira, and Averbakh (2013), Lutter et al. (2017)

The works related to SCP are **linear** programming problems, only joint resource allocation problem considers **nonlinear** functions in the objective functions

Literature Review

- Commonly used methods
 - Branch-and-bound: Beraldi and Ruszczynski (2002)
 - Branch-and-cut: Pereira, and Averbakh (2013)
 - Cutting plane approach: Lutter et al. (2017)
 - Benders decomposition: Pereira, and Averbakh (2013)
 - Heuristics & Meta-heuristics
 - Greedy heuristic: Chvatal (1979)
 - Marginal-return-based constructive heuristic: Xin et al. (2018)
 - Genetic algorithm: Pereira, and Averbakh (2013)
 - Memetic algorithm: Wang et al. (2019)
 - MOEA/D: Xu et al. (2020)

Heuristics and meta-heuristics can solve the **nonlinear** programming, but **none** of the works consider **approximating** the problem with **linear** programming model.

Motivation

- Multi-platforms location
- Perform cooperation tasks
- Probabilistic covering with uncertainty
- Unlike past works use heuristics & meta-heuristics

We introduce a novel set covering problem with **cooperation tasks under uncertainty** as an integer **nonlinear** programming and considers **linear approximation technique** to solve the problem with **nearoptimal** solutions in **real-time**.

Paper Contribution

- A compact mixed-integer linear programming formulation is proposed by utilizing robust optimization and constraint relaxation.
- The proposed formulation is analyzed on a large set of test cases with 10125 different instances.
- A majority of the under-approximate solutions are proven to be optimal while few of them slightly violate the constraints and provide an efficient lower bound.

Model Formulation

Two-Level Cooperative Set Covering Problem (TLCSCP)

Generalized Uncertain Two-Level Cooperative Set Covering Problem (GUTLCSCP)

• Probabilistic covering

$$P\left(\sum_{j\in\mathcal{C}^1}a_{ij}\geq 1\right)=1-\prod_{j\in\mathcal{C}^1}p_{ij}, \ P\left(\sum_{k\in\mathcal{C}^2}b_{ik}\geq 1\right)=1-\prod_{k\in\mathcal{C}^2}q_{ik}$$

Linear approximation reformulation

$\int m_i = \prod_{j \in \mathcal{J}} p_{ij}^{y_j}$	min	$\sum_{j \in \mathcal{J}} c_j^1 y_j + \sum_{k \in \mathcal{K}} c_k^2 z_k$		
$\begin{cases} n_i = \prod_{k \in \mathcal{K}} q_{ik}^{z_k} \\ (1 - m_i)(1 - n_i) \ge \alpha \end{cases}$	s.t.	$\ln(m_i) = \sum_{j \in \mathcal{J}} \ln(p_{ij}) y_j$	$\forall i \in \mathcal{I}$	(14)
\uparrow		$\ln(n_i) = \sum_{k \in \mathcal{K}} \ln(q_{ik}) z_k$	$\forall i \in \mathcal{I}$	(15)
v		$(1-m_i)(1-n_i) \ge \alpha$	$\forall i \in \mathcal{I}$	(16)
$\int \ln(m_i) = \sum_{j \in \mathcal{J}} \ln(p_{ij}) y_j$		$y_j \in \{0, 1\}$	$\forall j \in \mathcal{J}$	
$ \ln(n_i) = \sum_{k \in \mathcal{K}} \ln(q_{ik}) z_k, $		$z_k \in \{0, 1\}$	$orall k \in \mathcal{K}$	
$(1-m_i)(1-n_i) \ge \alpha$		$0 \le m_i \le 1$	$\forall i \in \mathcal{I}$	(17)
		$0 \le n_i \le 1$	$\forall i \in \mathcal{I}.$	(18)

Linear approximation reformulation

How to approximate the nonlinear constraints (16)? $(1 - m_i)(1 - n_i) \ge \alpha$ ------

1. Approximate the two terms in the left-hand-side by two linear constraints, respectively

$$\begin{cases} 1 - m_i \ge \alpha \\ 1 - n_i \ge \alpha \end{cases} \iff \begin{cases} \sum_{j \in \mathcal{J}} \ln(p_{ij}) y_j \le \ln(1 - \alpha) \\ \sum_{k \in \mathcal{K}} \ln(q_{ik}) z_k \le \ln(1 - \alpha) \end{cases}$$

2. Approximate the two terms in the left-hand-side together by one linear constraint tangent to (16) /

 $\beta \ln(m_i) + \gamma \ln(n_i) \leq \ln(F_i(\alpha, \beta, \gamma)) \iff m_i^\beta n_i^\gamma \leq F_i(\alpha, \beta, \gamma)^{-1}$

substitute by m_i : the equality equation (16) $m_i = 1 - \alpha/(1 - n_i)$ and obtain the parameters of F_i by calculating the tangent point.

$$1-m_i \ge \alpha \text{ and } 1-n_i \ge \alpha, \ \alpha = 0.9$$

$$\beta \ln(m_i) + \gamma \ln(n_i) \le \ln(F_i(\alpha, \beta, \gamma)) \quad \alpha = 0.9 \quad \beta + \gamma = 1$$

Linear approximation formulation of the GUTLCSCP (GUTLCSCP-LA)

$$\begin{array}{lll} \min & \sum_{j \in \mathcal{J}} c_j^1 y_j + \sum_{k \in \mathcal{K}} c_k^2 z_k \\ \text{s.t.} & \sum_{j \in \mathcal{J}} \ln(p_{ij}) y_j \leq \ln(1 - \alpha) \\ & \sum_{k \in \mathcal{K}} \ln(q_{ik}) z_k \leq \ln(1 - \alpha) \\ & \beta \sum_{j \in \mathcal{J}} \ln(p_{ij}) y_j + \gamma \sum_{k \in \mathcal{K}} \ln(q_{ik}) z_k \leq \ln\left[\left(1 - \frac{\alpha}{1 - \delta}\right)^{\beta} n_i^{\gamma}\right] \\ & \forall i \in \mathcal{I} \\ & y_j \in \{0, 1\} \\ & \forall j \in \mathcal{J} \\ & \forall k \in \mathcal{K}, \end{array}$$

$$\begin{array}{lll} \forall i \in \mathcal{I} \\ & \forall j \in \mathcal{I} \\ & \forall k \in \mathcal{K}, \end{array}$$

$$\begin{array}{lll} \text{where } \delta & = & \frac{2\gamma + \alpha\beta - \alpha\gamma - \sqrt{\alpha(4\beta\gamma + \alpha\beta^2 + \alpha\gamma^2 - 2\alpha\beta\gamma)}}{2\gamma}. \quad \beta, \gamma \in [0, 1] \end{array}$$

are constants or vectors with $\beta + \gamma = 1$.

Modeling the Robust Uncertain Two-Level Cooperative Set Covering Problem

- Based on GUTLCSCP
- The probabilities p_{ij} and q_{ik} are uncertain
 - within the interval $[\bar{p}_{ij}, \bar{p}_{ij} + \hat{p}_{ij}] \subseteq [0, 1]$ and $[\bar{q}_{ik}, \bar{q}_{ik} + \hat{q}_{ik}] \subseteq [0, 1]$
 - controlled by the budget of uncertainty $\boldsymbol{\Gamma}$
- Two Γ -scenario uncertainty sets

$$\begin{aligned} \mathscr{U}_{1}^{\Gamma_{i}} &:= \left\{ p_{i:} | \forall j \in \mathcal{J} : p_{ij} \in [\bar{p}_{ij}, \bar{p}_{ij} + \hat{p}_{ij}], \sum_{j \in \mathcal{J}} \frac{p_{ij} - \bar{p}_{ij}}{\hat{p}_{ij}} \leq \Gamma_{i} \right\} \\ \mathscr{U}_{2}^{\Gamma_{i}} &:= \left\{ q_{i:} | \forall k \in \mathcal{K} : q_{ik} \in [\bar{q}_{ik}, \bar{q}_{ik} + \hat{q}_{ik}], \sum_{k \in \mathcal{K}} \frac{q_{ik} - \bar{q}_{ik}}{\hat{q}_{ik}} \leq \Gamma_{i} \right\}, \end{aligned}$$

for all $i \in \mathcal{I}$, where $p_{i:} := (p_{ij})_{j \in \mathcal{J}}, q_{i:} := (q_{ik})_{k \in \mathcal{K}}$.

Robust Uncertain Two-Level Cooperative Set Covering Problem (RUTLCSCP)

$$\begin{split} & \underset{j \in \mathcal{J}}{\text{T-robust two-level-cooperative } \alpha \text{-cover}} & \underset{j \in \mathcal{J}}{\text{ min } \sum_{j \in \mathcal{J}} c_j^1 y_j + \sum_{k \in \mathcal{K}} c_j^2 z_k } \\ & \underset{j \in \mathcal{J}}{\text{ min } \sum_{i \in \mathcal{J}} c_i^1 (y, \Gamma_i)] \cdot \left[1 - \beta_i^2 (z, \Gamma_i) \right] \geq \alpha } & \forall i \in \mathcal{I} \\ & \underset{j \in \mathcal{J}}{\text{ s.t. } \left[1 - \beta_i^1 (y, \Gamma_i) \right] \cdot \left[1 - \beta_i^2 (z, \Gamma_i) \right] \geq \alpha } & \forall i \in \mathcal{I} \\ & y_j \in \{0, 1\} & \forall j \in \mathcal{J} \\ & z_k \in \{0, 1\} & \forall k \in \mathcal{K} \\ & \beta_i^1 (y, \Gamma_i) \coloneqq \max_{\{\mathcal{U}_1 \subseteq \mathcal{C}^1 (y) : |\mathcal{U}_1| \leq \Gamma_i\}} \left\{ \prod_{j \in \mathcal{U}_1} (\bar{p}_{ij} + \hat{p}_{ij})^{y_j} \cdot \prod_{j \in \mathcal{J} \setminus \mathcal{U}_1} \bar{p}_{ij}^{y_j} \right\} \\ & \beta_i^2 (z, \Gamma_i) \coloneqq \max_{\{\mathcal{U}_2 \subseteq \mathcal{C}^2 (z) : |\mathcal{U}_2| \leq \Gamma_i\}} \left\{ \prod_{k \in \mathcal{U}_2} (\bar{q}_{ik} + \hat{q}_{ik})^{z_k} \cdot \prod_{k \in \mathcal{K} \setminus \mathcal{U}_2} \bar{q}_{ik}^{z_k} \right\} \end{split}$$

Robust counterpart (RC) of RUTLCSCP with linear approximation (RUTLCSCP-LA-RC)

transformed to a mixed-integer linear programming (MILP) problem by the strong duality theorem and linear approximation

Computational Experiments

- Fixed cost
- Uncertain probability
- $\alpha \in \{0.8, 0.85, 0.9\}$
- $\Gamma \in \{0,\ldots,|\mathcal{I}|\}$
- Solved by Cplex

THE TEST-CASE FOR RUTLCSCP

Instance	$(\mathcal{I} , \mathcal{J} , \mathcal{K})$	(yr/km,zr/km)	$(A_x/km, A_y/km)$
P1.1–P1.5	(20, 20, 20)	(10, 5)	(25, 25)
P2.1-P2.5	(25, 25, 25)	(10, 5)	(25, 25)
P3.1–P3.5	(30, 30, 30)	(10, 5)	(25, 25)
P4.1–P4.5	(40, 40, 40)	(14, 7)	(50, 50)
P5.1–P5.5	(50, 50, 50)	(14, 7)	(50, 50)
P6.1–P6.5	(60, 60, 60)	(14, 7)	(50, 50)
P7.1–P7.5	(80, 80, 80)	(20, 10)	(100, 100)
P8.1–P8.5	(100, 100, 100)	(20, 10)	(100, 100)
P9.1–P9.5	(120, 120, 120)	(20, 10)	(100, 100)
P10.1-P10.5	(140, 140, 140)	(20, 10)	(100, 100)
	number of demand	d covering	positions of the
	nodes (candidate	ranges	demand nodes

Each demand node serves as a candidate location site for y-facility and z-facility

locations)

(candidate locations)

Computational Experiments

COMPUTATIONAL RESULTS FOR KUTLCSCP										
Instance	$lpha=0.8^*$		$\alpha = 0.85^*$		$\alpha = 0.9$					
	Opt. (%)	Time	CV (%)	Opt. (%)	Time	CV (%)	Opt. (%)	Time	CV (%)	Degree of feasibility (%)
P1.1-P1.5	100.00	0.14	0.00	100.00	0.17	0.00	100.00	0.10	0.00	61.90
P2.1-P2.5	100.00	0.21	0.00	100.00	0.25	0.00	98.75	0.20	0.05	61.54
P3.1-P3.5	100.00	0.24	0.00	100.00	0.33	0.00	99.20	0.37	0.03	80.65
P4.1–P4.5	100.00	0.32	0.00	100.00	0.48	0.00	100.00	0.30	0.00	21.95
P5.1-P5.5	100.00	0.56	0.00	100.00	0.76	0.00	100.00	0.44	0.00	41.18
P6.1–P6.5	100.00	1.03	0.00	100.00	1.01	0.00	100.00	0.44	0.00	21.31
P7.1-P7.5	80.25	1.48	0.25	100.00	1.60	0.00	100.00	0.74	0.00	1.23
P8.1–P8.5	100.00	3.00	0.00	80.00	3.76	0.20	96.10	2.81	0.04	40.59
P9.1–P9.5	100.00	4.59	0.00	100.00	5.98	0.00	99.18	4.58	0.01	40.50
P10.1-P10.5	100.00	7.29	0.00	80.14	8.33	0.14	100.00	5.68	0.00	20.57

COMPUTATIONAL RESULTS FOR RUTLCSCP

TABLE II

Degree of feasibility are 100%.

Computational Experiments

- total constraint violations ϕ
- proportion of violations with total nonlinear constraints #

In summary, a set of 10125 instances are generated and solved with good quality and acceptable time. Up to 74.10% (7502 instances) are solved to optimality, 3.29% (333 instances) are underapproximation, and 22.62% (2290 instances) are with no solution. TABLE III

INSTANCE TYPES WITH CONSTRAINT VIOLATION

Instance	α	Г	Obj.	ϕ	#
P2.2	0.9	0	463.94	7.40E-06	1/20
P3.1	0.9	0	309.00	1.29E-05	1/25
P7.1	0.8	1+	1464.12	3.79E-04	1/80
P8.1	0.9	0	1258.93	1.13E-05	1/100
P8.2	0.85	0	1514.56	4.21E-04	1/100
P8.2	0.9	0	1603.00	8.01E-06	1/100
P8.3	0.85	1+	1444.47	2.51E-04 [‡]	1/100
P8.3	0.9	0	1409.12	1.93E-04	1/100
P8.3	0.9	2+	1942.41†	2.12E-04 [‡]	1/100
P9.2	0.9	0	1501.84	3.91E-04	1/120
P9.3	0.9	0	1312.91	3.97E-06	1/120
P10.3	0.85	1+	1408.94	3.44E-04	1/140

The objective values are still varying as different Γ .

The total constraint violations are varying with different Γ .

Concluding Remarks

- consider two types of facilities
- under-approximation with a larger feasible region
- computation time up to 10 seconds
- Future Research
- over-approximation with a smaller feasible region
- cooperation with more than two types of facilities
- more real-world applications

An Under-Approximation for the Robust Uncertain Two-Level Cooperative Set Covering Problem

Thank you for your attention!

Q&A