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China High-Speed Railway (HSR)——43700 kilometers (2023.12)

Operation as a network only in China

Japan
SCMagle

France
TGV

China
CR

Korea
KTX

Spain
AVE

Italy
Frecciarossa 1000

German
ICE

Italy
Italo

Turkey
YHT

320km/h

320km/h

350km/h

300km/h

320km/h

300km/h

320km/h

300km/h

250km/h

Large 

network size

High operation 

speed

High traffic 

density

Large amount 

of operation

Complex transportation 

organization

Diversified travel 

demand

It is a great challenge to keep the HSR operate punctually 

China
70% Others

30%

9.9 11.1

16.5
19.4

22
25

29

35
37.9

40
42

0

5

10

15

20

25

30

35

40

45

200820092010201120122013201420152016201720182019202020212022

HSR Mileage in China×1,000km



Evolutionary MOO for HSR TTR with Optimal/Suboptimal Solutions into Initial Population

Train Timetable Rescheduling (TTR) is the key issue for emergency
decision under disruption

• If the dispatching is not reasonable, once an emergency occurs, it is easy to cause a large area of 
train delay and other serious consequences, bringing inconvenience to passengers and reducing the 
operation efficiency of high-speed railway.

2018.12

Heavy snow cause multiple train delay in 

Changsha South Station

2021.05
Beijing-Tianjin intercity high-speed railway with 

severe delay since overhead line with foreign matter
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How to propose a simple and effective rescheduling model and a fast solution
algorithm has become an urgent need for the efficient operation of high-speed
railway.

Mainly handled 

by dispatchers 

based on their 

experience 

under

emergencies

①Formulate mixed integer 

linear programming models

②One or multiple objectives

③Use exact method, 

metaheuristics, or AI technique

Manual scheduling decision is not optimal 

decision, which cannot guarantee high 

efficiency and precise operation

① NP-hard

② Time consuming and suboptimal

Train dispatching system is the "brain" and "commander" of high-speed railway system

Real Application Theoretical research
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Different levels in HSR scheduling



Motivation

• HSR may face inevitable emergencies, e.g., infrastructure failure, train
failure, natural disasters. Rescheduling is conducted for recovering to
normal operation.

• When the scale of the problem is getting larger, and due to multiple
objectives, using the CPLEX solver will cost much time, which may
exceed the time limit.

• Obtaining the entire Pareto front is time consuming, railway dispatcher
only interests in part of the front.
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Paper Contribution

• A multi-objective high-speed railway train timetable rescheduling

problem with train delay is proposed and modeled as an MILP problem.

• An effective multi-permutation encoding method is proposed for the

TTR problem, and a rule-based decoding method is designed to obtain a

new schedule. These encoding and decoding methods can manage the

entire constraints and guarantee the feasibility of the solution.

• A novel nondominated sorting genetic algorithm-II (NSGA-II) is

developed with optimal and suboptimal solutions for initialization and

new mechanisms for population crossover and mutation.
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Model Formulation
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Decision Variables

Symbol Description

𝑡𝑖,𝑗
𝑎

the actual arrival time of train 𝑖 at station 𝑗

𝑡𝑖,𝑗
𝑑 the actual departure time of train 𝑖 at station 𝑗

𝑞𝑖,𝑗,(𝑠,𝑠+1)
the actual traversing order, 1 if train 𝑖 traverses 

on section (𝑠, 𝑠 + 1) before train 𝑗; 0 otherwise
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Formulation

Bi-objective function

• Minimize the total delay time, including the delay arrival and 
departure time of each train at all the stations

• Minimize the frequency of the train schedule adjustments, calculated 
by the total number of train arrival/departure time adjustments
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Formulation

Constraints

• Dwell time constraints

• Running time constraints
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Formulation

Constraints

• Headway constraints for departure headway and arrival headway

• Traverse order constraint of two trains in a section

• Departure and arrival time constraints
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Formulation

• Model Reformulation

• Linearization method is 
developed to deal with sgn(·) 
in F2

• Substitute sgn(·) by
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Evolutionary Algorithms for 
Train Timetable Rescheduling
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Encoding and Decoding

• Using multi-permutation-based encoding instead of real-coded encoding

• Real-coded encoding

• Dimension: 2|T||J| Solution space: 14402|T||J| (for integer arrival/departure time)

• Multi-permutation-based encoding

• Dimension: |T||J| Solution space: |T|! |J|

• The dimension and solution space is much smaller in permutation-based 
encoding

• There are unfeasible region in real-coded encoding, constraints handling 
should be designed
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Encoding and Decoding

• Obtain the actual arrival time and departure time through the decoding 
procedure

• Traversing order is obtained through the permutation-based encoding

• Decide arrival time and departure time satisfying different constraints 
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NSGA-II: Population Initialization

• Random initialization

• Adding one or more Pareto optimal (near Pareto optimal) solutions 
into the initial population

• Three optimal solutions with weights weight vector 1 (0.98, 0.02) op1, weight 
vector 2 (0.2, 0.8) op2, and weight vector 3 (0.02, 0.98) op3

• One near optimal solution: first-come-first-served (FCFS) strategy (nop)
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NSGA-II: Selection, Crossover, and Mutation Operators

• Selection

• Crowding distance to rank the parent and child individuals within the size of 
the population

• Randomly select one permutation from |K| permutations for crossover 
and mutation

• Crossover

• Mutation
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Computational Experiments
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Computational Experiments

• The Beijing-Tai’an section of 
Beijing–Shanghai HSR line

• 7 stations and 6 sections 

• 40 trains downstream from 6:00 to 
16:00

• Dwell time: 2 min

• Minimum running time of each 
section are 15, 14, 14, 21, 17, 15 
(min), respectively

• Minimal headway: 4 min
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Computational Experiments

• Three test instances

• Instance No.1: There are only dwell time disturbances when trains stop at stations.

• Instance No.2: There are only running time disturbances when trains run at sections.

• Instance No.3: There are both dwell time and running time disturbances.

• Nine subsets of the three Pareto optimal and one near Pareto optimal 
solutions are used to develop the NSGA-II variants.

• {op1}, {op2}, {op3}, {op1, op2}, {op1, op2, op3}, {nop}, {nop, op1}, {nop, op2}, 
{nop, op1, op2} 

• Population size Np = 50, MaxGen = 1000, pc = 0.7, pm = 0.3, 20 independent 
trials.
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Computational Experiments
• The results of the NSGA-II with one or more Pareto optimal (near Pareto optimal) 

solutions for initialization are better than the original NSGA-II with random 
initialization. (in terms of IGD)
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Computational Experiments
• The results of the NSGA-II with one or more Pareto optimal (near Pareto optimal) 

solutions for initialization are better than the original NSGA-II with random 
initialization. (in terms of HV)

Evolutionary MOO for HSR TTR with Optimal/Suboptimal Solutions into Initial Population



Computational Experiments
• The solutions of NSGA-II are far from the Pareto front on all instances.

• However, if Pareto optimal or near Pareto optimal solutions are included, the obtained 
solutions are close to the Pareto front and even similar to parts of the Pareto front.
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Computational Experiments
• Computation time of NSGA-II (and its variants) on instances Nos. 1-3.

• For instance No.1, the time of the solver may be less than the time by NSGA-II op1, 
NSGA-II op2, NSGA-II op1nop, and NSGA-II op2nop.

• For instance Nos. 2-3, additional optimal solutions are obtained with less computation 
time compared with the solver. 
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Concluding Remarks
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Concluding Remarks

• The multi-objective high-speed railway TTR problem is formulated as an 
MILP problem. 

• A multi-permutation based NSGA-II is proposed.

• A novel encoding and decoding method are specially designed.

• One or more Pareto optimal and near Pareto optimal solutions are included 
into the initial population.

• Obtained optimal/suboptimal solutions within one minute.

Future Research

• Develop more efficient operators for NSGA-II.

• Consider other EAs to obtain more Pareto optimal solutions.
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Thank you for your attention!
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