Evolutionary Multi-Objective Optimization for High-Speed Railway Train Timetable Rescheduling with Optimal/Suboptimal Solutions into Initial Population

Shuxin Ding¹,², Lu Yan³, Yanhao Sun¹,², Yumou Ren¹,², Xiaozhao Zhou¹,², and Qingyun Fu⁴,¹,²

1. Signal and Communication Research Institute, China Academy of Railway Sciences Corporation Limited
2. Traffic Management Laboratory for High-Speed Railway, National Engineering Research Center of System Technology for High-Speed Railway and Urban Rail Transit
3. China Academy of Railway Sciences Corporation Limited
4. Postgraduate Department, China Academy of Railway Sciences

The 2024 Australian and New Zealand Control Conference
The City of Gold Coast, 01 – 02 February 2024, Australia
Outline

• Introduction

• Model Formulation

• Evolutionary Algorithms for Train Timetable Rescheduling

• Computational Experiments

• Concluding Remarks
Introduction
Evolutionary MOO for HSR TTR with Optimal/Suboptimal Solutions into Initial Population

China High-Speed Railway (HSR)——43700 kilometers (2023.12)

Operation as a network only in China

It is a great challenge to keep the HSR operate punctually

<table>
<thead>
<tr>
<th>Large network size</th>
<th>High operation speed</th>
<th>High traffic density</th>
<th>Large amount of operation</th>
<th>Complex transportation organization</th>
<th>Diversified travel demand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Train Timetable Rescheduling (TTR) is the key issue for emergency decision under disruption

- If the dispatching is not reasonable, once an emergency occurs, it is easy to cause a large area of train delay and other serious consequences, bringing inconvenience to passengers and reducing the operation efficiency of high-speed railway.
How to propose a simple and effective rescheduling model and a fast solution algorithm has become an urgent need for the efficient operation of high-speed railway.

Train dispatching system is the "brain" and "commander" of high-speed railway system

- **Real Application**
 - Mainly handled by dispatchers based on their experience under emergencies

- **Theoretical research**
 1. Formulate mixed integer linear programming models
 2. One or multiple objectives
 3. Use exact method, metaheuristics, or AI technique

Manual scheduling decision is not optimal decision, which cannot guarantee high efficiency and precise operation

- 1. NP-hard
- 2. Time consuming and suboptimal
Different levels in HSR scheduling

- **Strategic level**
 - Network planning
 - Passenger transport demand analysis
 - Line planning

- **Tactical level**
 - Train timetable scheduling
 - Station operational planning
 - Rolling stock scheduling
 - Crew scheduling
 - Train timetable rescheduling

- **Operational level**
 - Rolling stock rescheduling
 - Crew rescheduling

Macros
- Macro demand
- Distributed iterative scheduling
- Artificial experience rescheduling
Motivation

• HSR may face inevitable emergencies, e.g., infrastructure failure, train failure, natural disasters. Rescheduling is conducted for recovering to normal operation.

• When the scale of the problem is getting larger, and due to multiple objectives, using the CPLEX solver will cost much time, which may exceed the time limit.

• Obtaining the entire Pareto front is time consuming, railway dispatcher only interests in part of the front.
Paper Contribution

• A multi-objective high-speed railway train timetable rescheduling problem with train delay is proposed and modeled as an MILP problem.

• An effective multi-permutation encoding method is proposed for the TTR problem, and a rule-based decoding method is designed to obtain a new schedule. These encoding and decoding methods can manage the entire constraints and guarantee the feasibility of the solution.

• A novel nondominated sorting genetic algorithm-II (NSGA-II) is developed with optimal and suboptimal solutions for initialization and new mechanisms for population crossover and mutation.
Model Formulation
Decision Variables

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{i,j}^a$</td>
<td>the actual arrival time of train i at station j</td>
</tr>
<tr>
<td>$t_{i,j}^d$</td>
<td>the actual departure time of train i at station j</td>
</tr>
<tr>
<td>$q_{i,j,(s,s+1)}$</td>
<td>the actual traversing order, 1 if train i traverses on section $(s, s + 1)$ before train j; 0 otherwise</td>
</tr>
</tbody>
</table>

\[
t_{i,j}^a, t_{i,j}^d \geq 0, \quad q_{i,l,k} \in \{0, 1\}
\]
Formulation

Bi-objective function

• **Minimize** the total delay time, including the delay arrival and departure time of each train at all the stations

• **Minimize** the frequency of the train schedule adjustments, calculated by the total number of train arrival/departure time adjustments

\[
\begin{align*}
\min F_1 &= \sum_{i \in T} \sum_{j \in J} (t_{i,j}^a - T_{i,j}^a) + \sum_{i \in T} \sum_{j \in J} (t_{i,j}^d - T_{i,j}^d) \\
\min F_2 &= \sum_{i \in T} \sum_{j \in J} \text{sgn}(t_{i,j}^a - T_{i,j}^a) + \sum_{i \in T} \sum_{j \in J} \text{sgn}(t_{i,j}^d - T_{i,j}^d)
\end{align*}
\]
Evolutionary MOO for HSR TTR with Optimal/Suboptimal Solutions into Initial Population

Formulation

Constraints

• Dwell time constraints

\[t_{i,j}^d - t_{i,j}^a \geq d_{i,j}^{min} \quad \forall i \in T; \ j \in J; (i, j) \notin J^{dis} \]

\[t_{i,j}^d - t_{i,j}^a \geq T_{i,j}^d - T_{i,j}^a + d_{i,j}^{dis} \quad \forall i \in T; \ j \in J; (i, j) \in J^{dis} \]

• Running time constraints

\[t_{i,j+1}^a - t_{i,j}^d \geq r_k^{min} \quad \forall i \in T; \ j \in J/\{ |J| \}; (i, k) \notin K^{dis} \]

\[t_{i,j+1}^a - t_{i,j}^d \geq T_{i,j+1}^a - T_{i,j}^d + r_{i,k}^{dis} \quad \forall i \in T; \ j \in J/\{ |J| \}; (i, k) \in K^{dis} \]
Formulation

Constraints

• Headway constraints for departure headway and arrival headway
 \[t_{i,j}^d - t_{i,j}^d \geq H_k q_{i,l,k} - M(1 - q_{i,l,k}) \]
 \[t_{i,j+1}^a - t_{i,j+1}^a \geq H_k q_{i,l,k} - M(1 - q_{i,l,k}) \]

• Traverse order constraint of two trains in a section
 \[q_{i,l,k} + q_{l,i,k} = 1 \ \forall i, l \in T; i \neq l; k \in K \]

• Departure and arrival time constraints
 \[t_{i,j}^d \geq T_{i,j}^d + d_{i,j}^{dis} \ \forall i \in T; j \in J \]
 \[t_{i,j}^a \geq T_{i,j}^a + r_{i,k}^{dis} \ \forall i \in T; j \in J; k = j - 1 \]
Formulation

• Model Reformulation
 • Linearization method is developed to deal with $\text{sgn}(\cdot)$ in F_2
 • Substitute $\text{sgn}(\cdot)$ by

\[
\begin{cases}
 r_{1}^{i,j} = \text{sgn}(t_{i,j}^{a} - T_{i,j}^{a}) & \forall i \in T; j \in J \\
 r_{2}^{i,j} = \text{sgn}(t_{i,j}^{d} - T_{i,j}^{d}) & \forall i \in T; j \in J
\end{cases}
\]

\[
\begin{align*}
\min & \quad F_1 \\
\min & \quad F_2 = \sum_{i \in T} \sum_{j \in J} r_{1}^{i,j} + \sum_{i \in T} \sum_{j \in J} r_{2}^{i,j} \\
\text{s.t.} & \quad Mr_{1}^{i,j} \geq t_{i,j}^{a} - T_{i,j}^{a} \quad \forall i \in T; j \in J \\
& \quad Mr_{2}^{i,j} \geq t_{i,j}^{d} - T_{i,j}^{d} \quad \forall i \in T; j \in J \\
& \quad r_{1}^{i,j} \leq t_{i,j}^{a} - T_{i,j}^{a} \quad \forall i \in T; j \in J \\
& \quad r_{2}^{i,j} \leq t_{i,j}^{d} - T_{i,j}^{d} \quad \forall i \in T; j \in J \\
& \quad r_{1}^{i,j}, r_{2}^{i,j} \in \{0, 1\} \quad \forall i \in T; j \in J \\
\text{Constraints (3) – (11).}
\end{align*}
\]
Evolutionary Algorithms for Train Timetable Rescheduling
Encoding and Decoding

- Using multi-permutation-based encoding instead of real-coded encoding

- Real-coded encoding
 \[[t_{1,1}^a, t_{1,1}^d, t_{1,2}^a, t_{1,2}^d, \ldots, t_{i,j}^a, t_{i,j}^d, \ldots, t_{|T|,|J|}^a, t_{|T|,|J|}^d], i \in T, j \in J, 1 \leq t_{i,j}^a, t_{i,j}^d \leq 1440 \]
 - Dimension: \(2|T||J|\)
 - Solution space: \(1440^{2|T||J|}\) (for integer arrival/departure time)

- Multi-permutation-based encoding
 \[[p_{1,1}, p_{2,1}, \ldots, p_{i,1}, \ldots, p_{|T|,1}, p_{1,2}, \ldots, p_{|T|,2}, \ldots, p_{|T|,|J|}], i \in T, j \in J, p_{i,j} \in \{1, \ldots, |T|\} \]
 - Dimension: \(|T||J|\)
 - Solution space: \(|T|! |J|\)

- The dimension and solution space is much smaller in permutation-based encoding

- There are unfeasible region in real-coded encoding, constraints handling should be designed
Encoding and Decoding

• Obtain the actual arrival time and departure time through the decoding procedure
 • Traversing order is obtained through the permutation-based encoding
 • Decide **arrival time** and departure time satisfying different constraints
Encoding and Decoding

• Obtain the actual arrival time and departure time through the decoding procedure
 • Traversing order is obtained through the permutation-based encoding
 • Decide arrival time and departure time satisfying different constraints

Minimum running time constraints
Minimum dwelling time constraints
Headway constraints
Encoding and Decoding

- Obtain the actual arrival time and departure time through the decoding procedure
 - Traversing order is obtained through the permutation-based encoding
 - Decide arrival time and departure time satisfying different constraints
NSGA-II: Population Initialization

• Random initialization

• Adding one or more Pareto optimal (near Pareto optimal) solutions into the initial population
 • Three optimal solutions with weights weight vector 1 (0.98, 0.02) op_1, weight vector 2 (0.2, 0.8) op_2, and weight vector 3 (0.02, 0.98) op_3
 • One near optimal solution: first-come-first-served (FCFS) strategy (nop)
NSGA-II: Selection, Crossover, and Mutation Operators

• Selection
 • Crowding distance to rank the parent and child individuals within the size of the population

• Randomly select one permutation from $|K|$ permutations for crossover and mutation

• Crossover

• Mutation

Modified order crossover for the permutation-value encoding

Swap mutation for the permutation-value encoding
Computational Experiments
Computational Experiments

- The Beijing-Tai’an section of Beijing–Shanghai HSR line
- 7 stations and 6 sections
- 40 trains downstream from 6:00 to 16:00
- Dwell time: 2 min
- Minimum running time of each section are 15, 14, 14, 21, 17, 15 (min), respectively
- Minimal headway: 4 min
Computational Experiments

• Three test instances
 • Instance No.1: There are only dwell time disturbances when trains stop at stations.
 • Instance No.2: There are only running time disturbances when trains run at sections.
 • Instance No.3: There are both dwell time and running time disturbances.

• Nine subsets of the three Pareto optimal and one near Pareto optimal solutions are used to develop the NSGA-II variants.
 • \{op1\}, \{op2\}, \{op3\}, \{op1, op2\}, \{op1, op2, op3\}, \{nop\}, \{nop, op1\}, \{nop, op2\}, \{nop, op1, op2\}

• Population size $N_p = 50$, $MaxGen = 1000$, $p_c = 0.7$, $p_m = 0.3$, 20 independent trials.
Computational Experiments

• The results of the NSGA-II with one or more Pareto optimal (near Pareto optimal) solutions for initialization are better than the original NSGA-II with random initialization. (in terms of IGD)
Computational Experiments

- The results of the NSGA-II with one or more Pareto optimal (near Pareto optimal) solutions for initialization are better than the original NSGA-II with random initialization. (in terms of HV)
Computational Experiments

• The solutions of NSGA-II are far from the Pareto front on all instances.

• However, if Pareto optimal or near Pareto optimal solutions are included, the obtained solutions are close to the Pareto front and even similar to parts of the Pareto front.
Computational Experiments

• The solutions of NSGA-II are far from the Pareto front on all instances.

• However, if Pareto optimal or near Pareto optimal solutions are included, the obtained solutions are close to the Pareto front and even similar to parts of the Pareto front.
Computational Experiments

• The solutions of NSGA-II are far from the Pareto front on all instances.

• However, if Pareto optimal or near Pareto optimal solutions are included, the obtained solutions are close to the Pareto front and even similar to parts of the Pareto front.
Computational Experiments

- Computation time of NSGA-II (and its variants) on instances Nos. 1-3.
- For instance No.1, the time of the solver may be less than the time by NSGA-II op1, NSGA-II op2, NSGA-II op1nop, and NSGA-II op2nop.
- For instance Nos. 2-3, additional optimal solutions are obtained with less computation time compared with the solver.

TABLE III

<table>
<thead>
<tr>
<th>Instance</th>
<th># of Optimal Solutions</th>
<th>Time (s)</th>
<th>NSGA-II</th>
<th>NSGA-II_op1</th>
<th>NSGA-II_op2</th>
<th>NSGA-II_op3</th>
<th>NSGA-II_op12</th>
<th>NSGA-II_op123</th>
<th>NSGA-II_nop</th>
<th>NSGA-II_op1nop</th>
<th>NSGA-II_op2nop</th>
<th>NSGA-II_op12nop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>9.42</td>
<td>10.33</td>
<td>11.59</td>
<td>9.82</td>
<td>13.57</td>
<td>15.18</td>
<td>8.35</td>
<td>10.40</td>
<td>11.62</td>
<td>13.58</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9.78</td>
<td>16.10</td>
<td>20.51</td>
<td>51.95</td>
<td>27.91</td>
<td>51.25</td>
<td>8.66</td>
<td>16.12</td>
<td>20.58</td>
<td>27.99</td>
<td></td>
</tr>
</tbody>
</table>
Concluding Remarks
Concluding Remarks

• The multi-objective high-speed railway TTR problem is formulated as an MILP problem.

• A multi-permutation based NSGA-II is proposed.

• A novel encoding and decoding method are specially designed.

• One or more Pareto optimal and near Pareto optimal solutions are included into the initial population.

• Obtained optimal/suboptimal solutions within one minute.

Future Research

• Develop more efficient operators for NSGA-II.

• Consider other EAs to obtain more Pareto optimal solutions.
Thank you for your attention!